98%
921
2 minutes
20
Microcystin-LR (MC-LR) is a kind of natural toxin which exists widely in aquatic environments and has been reported to be hepatotoxic and carcinogenic. At present, the promoting mechanism of MC-LR on hepatocellular carcinoma (HCC) remains largely unexplored. In this study, the hepatocellular promoting effect of MC-LR was described in Kras transgenic zebrafish, a doxycycline (DOX) inducible HCC model. Our results showed that MC-LR could aggravate the progression of HCC at an environmentally relevant concentration (3 μg/L), which was accompanied by the decreased activity and down-regulated transcription level of serine/threonine phosphatase 2A (PP2A). Using TMT labeling quantitative phosphoproteomics, we found that the 1049 phosphopeptides were significantly changed (508 up-regulated and 541 down-regulated) in liver from combined exposure to DOX and 3 μg/L MC-LR group compared to the DOX group. Enriched pathways by KEGG analysis suggested that differentially phosphorylated proteins were mainly related to Wnt signaling pathway. Furthermore, the mRNA expression and protein abundance of β-Catenin in Wnt signaling pathway were significantly up-regulated following exposure to MC-LR. In short, our results suggested that MC-LR significantly inhibited the activity of PP2A, which in turn activated Wnt signaling, eventually resulting in progression of liver tumor in transgenic zebrafish.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aquatox.2022.106313 | DOI Listing |
Toxicol Rep
December 2025
Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Japan.
Zebrafish embryos are widely used in developmental toxicity testing. However, the extent to which genetic background influences susceptibility to teratogenic compounds remains incompletely understood. We here evaluated inter-strain variability in both phenotypic and transcriptomic responses to six model teratogens using five commonly utilized zebrafish strains, AB, TU, RW, WIK, and PET.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
August 2025
Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou 510620, China.
Objectives: To investigate the role of ferroptosis in diquat-induced acute kidney injury (AKI) and its molecular mechanisms.
Methods: Transgenic zebrafish models with Tg (Eco.Tshb:EGFP) labeling of the renal tubules and Tg (lyz:dsRed2) labeling of the neutrophils were both divided into control group, gentamicin (positive control) group, diquat poisoning group, ferroptosis inhibitor group.
Skeletal patterning relies on a complex network of molecular and genetic regulators. However, our understanding of pathways governing joint placement and morphogenesis remains incomplete. Prior studies in have demonstrated that medially located Cx43 mediated gap junctional intercellular communication (GJIC) inhibits joint formation by the adjacent lateral skeletal precursor cells, and thereby determines skeletal patterning in the teleost regenerating fin.
View Article and Find Full Text PDFACS Nano
September 2025
Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden.
DNA origami-based nanotechnology is a versatile tool for exploring fundamental biological questions and holds significant promise for future biomedical applications. Here, we leverage the optical transparency of the embryonic zebrafish to analyze live embryos injected intravenously with fluorescently labeled wireframe DNA origami nanosheets. Our approach integrated long-term, high-resolution imaging of transgenic live zebrafish embryos with single-cell RNA sequencing to elucidate the effects of oligolysine-polyethylene glycol copolymer (K-PEG) coating on the biodistribution of fluorescence signal in embryos injected with wireframe DNA origami nanosheets.
View Article and Find Full Text PDFbioRxiv
August 2025
Janelia Research Campus, HHMI, Ashburn VA, USA.
All cells in an animal collectively ensure, moment-to-moment, the survival of the whole organism in the face of environmental stressors. Physiology seeks to elucidate the intricate network of interactions that sustain life, which often span multiple organs, cell types, and timescales, but a major challenge lies in the inability to simultaneously record time-varying cellular activity throughout the entire body. We developed WHOLISTIC, a method to image second-timescale, time-varying intracellular dynamics across cell-types of the vertebrate body.
View Article and Find Full Text PDF