Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Zebrafish embryos are widely used in developmental toxicity testing. However, the extent to which genetic background influences susceptibility to teratogenic compounds remains incompletely understood. We here evaluated inter-strain variability in both phenotypic and transcriptomic responses to six model teratogens using five commonly utilized zebrafish strains, AB, TU, RW, WIK, and PET. All test compounds, valproic acid, hydroxyurea, methotrexate, acitretin, topiramate, and ibuprofen, elicited concentration-dependent developmental toxicity characterized by malformations at moderate doses and lethality at higher concentrations. Despite distinct toxicodynamic profiles, the incidence and severity of phenotypic outcomes were highly consistent across strains. Transcriptomic analysis was performed following exposure to valproic acid, hydroxyurea, and warfarin, revealing strong, dose-dependent gene expression changes that were largely conserved among strains. Principal component analysis demonstrated that chemical concentration, rather than strain, was the dominant driver of transcriptional variation. Minor strain-specific differences were observed at baseline or low-dose levels but did not alter the overall direction or magnitude of response. These findings demonstrate that zebrafish embryos from diverse genetic backgrounds exhibit broadly conserved developmental and molecular responses to teratogens. The minimal inter-strain variability supports the use of any wild-type strain, transgenic line, or even outbred population in developmental toxicity testing without compromising sensitivity or reproducibility. Our study reinforces the suitability of zebrafish as a robust vertebrate model in regulatory toxicology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12410486PMC
http://dx.doi.org/10.1016/j.toxrep.2025.102117DOI Listing

Publication Analysis

Top Keywords

developmental toxicity
12
gene expression
8
zebrafish strains
8
zebrafish embryos
8
toxicity testing
8
inter-strain variability
8
valproic acid
8
acid hydroxyurea
8
zebrafish
5
comparative analysis
4

Similar Publications

Ambroxol (AMB), a common expectorant, enters aquatic environments via wastewater, yet its ecological risks remain unclear. Under UV exposure (15 mJ·cm, λ = 185-400 nm), AMB undergoes photolysis, among the photoproducts, 4-((2-amino-3-bromobenzyl)amino) cyclohexanol (P1) and 2-amino-3,5-dibromobenzaldehyde (DBA) are major species, comprising over 50% of the total photoproduct peak area at the photolytic plateau. Acute toxicity tests with AMB, P1, and DBA in four aquatic species at different trophic levels revealed: the highest sensitivity in (LC = 0.

View Article and Find Full Text PDF

Aptamers as target-specific recognition elements in drug delivery.

Adv Drug Deliv Rev

September 2025

Biochemistry, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Molecular, Cellular, and Developmental Biology, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Chemistry, CUNY Gradua

Targeted drug delivery significantly enhances therapeutic efficacy across various diseases, particularly in cancer treatments, where conventional approaches such as chemotherapy and radiotherapy often cause severe side effects. In this context, nucleic acid aptamers-short, single-stranded DNA or RNA oligonucleotides capable of binding specific targets with high affinity-have emerged as promising tools for precision drug delivery and therapy. Aptamers can be selected against whole, living cells using SELEX and chemically modified for diverse applications.

View Article and Find Full Text PDF

A clinical and genotype-phenotype analysis of MACF1 variants.

Am J Hum Genet

September 2025

Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, Rotterdam 3000 CA, the Netherlands.

Microtubule-actin cross-linking factor 1 (MACF1) is a large protein of the spectraplakin family, which is essential for brain development. MACF1 interacts with microtubules through the growth arrest-specific 2 (Gas2)-related (GAR) domain. Heterozygous MACF1 missense variants affecting the zinc-binding residues in this domain result in a distinctive cortical and brain stem malformation.

View Article and Find Full Text PDF

In the zebrafish larval toxicity model, phenotypic changes induced by chemical exposure can potentially be explained and predicted by the analysis of gene expression changes at sub-phenotypic concentrations. The increase in knowledge of gene pathway-specific effects arising from the zebrafish transcriptomic model has the potential to enhance the role of the larval zebrafish as a component of Integrated Approaches to Testing and Assessment (IATA). In this paper, we compared the transcriptomic responses of triphenyl phosphate between two standard exposure paradigms, the Zebrafish Embryo Toxicity (ZET) and General and Behavioural Toxicity (GBT) assays.

View Article and Find Full Text PDF

Bridging Planarian Bioassays and AOP-Based Environmental Assessment: Toward Mechanistic Insights into Pollutant-Induced Disruptions.

Environ Res

September 2025

School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom. Electronic address:

Human activities have introduced a wide range of contaminants into aquatic ecosystems, posing substantial ecological and health risks. Robust bioindicators are essential for accurately predicting these impacts. Since the early 1980s, planarians-freshwater flatworms known for their remarkable regenerative ability and neurologically relevant system-have been used in ecotoxicology, witnessing renewed scientific interest post-2010.

View Article and Find Full Text PDF