Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metalloproteinase-1 (MMP-1) catalyzed collagen degradation is essential for a wide variety of normal physiological processes, while at the same time contributing to several diseases in humans. Therefore, a comprehensive understanding of this process is of great importance. Although crystallographic and spectroscopic studies provided fundamental information about the structure and function of MMP-1, the precise mechanism of collagen degradation especially considering the complex and flexible structure of the substrate, remains poorly understood. In addition, how the protein environment dynamically reorganizes at the atomic scale into a catalytically active state capable of collagen hydrolysis remains unknown. In this study, we applied experimentally-guided multiscale molecular modeling methods including classical molecular dynamics (MD), well-tempered (WT) classical metadynamics (MetD), combined quantum mechanics/molecular mechanics (QM/MM) MD and QM/MM MetD simulations to explore and characterize the early catalytic events of MMP-1 collagenolysis. Importantly the study provided a complete atomic and dynamic description of the transition from the open to the closed form of the MMP-1•THP complex. Notably, the formation of catalytically active Michaelis complex competent for collagen cleavage was characterized. The study identified the changes in the coordination state of the catalytic zinc(II) associated with the conformational transformation and the formation of catalytically productive ES complex. Our results confirm the essential role of the MMP-1 catalytic domain's α-helices (hA, hB and hC) and the linker region in the transition to the catalytically competent ES complex. Overall, the results provide unique mechanistic insight into the conformational transformations and associated changes in the coordination state of the catalytic zinc(II) that would be important for the design of effective MMP-1 inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.202200649DOI Listing

Publication Analysis

Top Keywords

early catalytic
8
catalytic events
8
collagen degradation
8
catalytically active
8
formation catalytically
8
changes coordination
8
coordination state
8
state catalytic
8
catalytic zincii
8
catalytic
5

Similar Publications

Peptide-Programmable DNAzyme Converter for Artificial Autocatalytic Gene Regulation.

J Am Chem Soc

September 2025

College of Chemistry and Molecular Sciences, Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, P. R. China.

The in-depth integration of gene regulation with protein modulation can enhance cellular information processing, yet it is significantly constrained by ineffective and complex protein-to-gene transduction strategies. Herein, we developed a simple protease-guided autocatalytic gene silencing platform named iPAD (intelligent peptide-programmed deoxyribonuclease) that converts the protease recognition events into versatile DNA readout signals by rationally designing a native protease-responsive cationic peptide (PP) to efficiently modulate the DNAzyme (Dz) activity. Without requiring additional chemical modifications, the multifunctional PP regulator consists simply of one cell-specific targeting peptide segment and two cationic peptide segments isolated by one protease-specific peptide substrate.

View Article and Find Full Text PDF

ConspectusHydroaminoalkylation, the catalytic addition of amines to alkenes, has evolved as a powerful tool in modern synthetic chemistry, offering an atom-economic and green approach to the construction of C-C bonds. This reaction enables the direct amine functionalization of alkenes and alkynes without the need for protecting groups, directing groups, or prefunctionalization, thereby eliminating stoichiometric waste and minimizing synthetic steps. Over the past two decades, significant advances in catalyst development and mechanistic understanding have expanded the scope of hydroaminoalkylation, allowing for control over regio-, diastereo-, and enantioselectivity.

View Article and Find Full Text PDF

In this study, we seek to deepen the understanding of the Fe effect in Ni-oxyhydroxide-mediated oxygen evolution reaction (OER) electrocatalysis in alkaline conditions, where extremely small amounts of Fe can have a dramatic impact on catalytic performance. For this purpose, Density Functional Theory (DFT) electronic structure calculations with implicit solvation description is employed in a constant pH/potential simulation framework. Nanoparticle models are considered for the nickel-based oxyhydroxide material with different degrees of Fe incorporation, and the pH/U-dependent interface structure is studied.

View Article and Find Full Text PDF

Cyclic peptides (CPs) are versatile building blocks whose conformational constraints foster ordered supramolecular architectures with potential in biomedicine, nanoelectronics, and catalysis. Herein, we report the development of biomimetic antifreeze materials by conjugating CPs bearing ice-binding residues to 4-arm polyethylene glycol (PEG) via click chemistry. The concentration-dependent self-assembly of these CP-PEG conjugates induces programmable morphological transitions, forming nanotube networks above the critical aggregation concentration (CAC) and two-dimensional nanosheet networks near the CAC.

View Article and Find Full Text PDF

Functionalized Dynamic Membrane for Wastewater Treatment.

Environ Sci Technol

September 2025

National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China.

Traditional dynamic membranes (DMs) are plagued by membrane fouling and low performance during long-term operation. In recent years, researchers have developed various functionalized dynamic membranes (FDMs) derived from DMs, employing different functional materials to provide an economically viable and promising solution for wastewater treatment. Nevertheless, there remains a gap in the comprehensive understanding of FDMs and the challenges encountered in their application.

View Article and Find Full Text PDF