98%
921
2 minutes
20
Polarization control is crucial for tailoring light-matter interactions. Direct manipulation of arbitrarily incident polarized waves could provide more degrees of freedom in the design of integrated and miniaturized terahertz (THz) devices. Metasurfaces with unprecedented wave manipulation capabilities could serve as candidates for fulfilling this requirement. Here, a kind of all-silicon metasurface is demonstrated to realize the conversion of arbitrary incident polarization states to circular polarization states in the THz band through the mutual interference of monolayer achiral meta-atoms. Also, we confirmed that the conversion intensities are controllable using the evolution behavior of arbitrary polarization states defined on the Poincaré sphere. Meta-platforms with circularly polarized incidence experience spin-selective destructive or constructive interference, exhibiting broadband circular dichroism (BCD) in the target frequency range. Based on the versatility of the proposed design, the feasibility of the theoretical derivation has been verified in the experiment process. By introducing the geometric phase principle, the proposed design is demonstrated to be an attractive alternative to achieve chiral wavefront manipulation. This work may provide a promising avenue to replace the cumbersome cascaded optical building blocks with an ultrathin meta-platform, which can be used in chiral spectroscopy, imaging, optical communication, and so on.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2nr03483b | DOI Listing |
Anal Chem
September 2025
Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria.
The discovery of solute precursors of crystalline materials, such as biominerals, recently challenged the classical nucleation theory (CNT). One emerging method for investigating these early-stage intermediates in solution is dissolution dynamic nuclear polarization (dDNP)-enhanced nuclear magnetic resonance (NMR) spectroscopy. Recent applications of dDNP to calcium carbonate (CaC) and calcium phosphate (CaP) mineralization have demonstrated the feasibility of identifying and tracing very early-stage prenucleation clusters (PNCs).
View Article and Find Full Text PDFNanoscale
September 2025
School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
The potential of hafnia-based ferroelectric materials for Ferroelectric Random Access Memory (FeRAM) applications is limited by the imprint effect, which compromises readout reliability. Here, we systematically investigate the asymmetric imprint behavior in W/HfZrO/W ferroelectric capacitors, demonstrating that the imprint direction correlates directly with the ferroelectric polarization state. Notably, a pre-pulse of specific polarity can temporarily suppress the imprint effect.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110V, Valparaíso, Chile.
Reversible control of spin-dependent thermoelectricity mechanical strain provides a platform for next-generation energy harvesting and thermal logic circuits. Using first-principles and Boltzmann transport calculations, we demonstrate that monolayer NiI undergoes a strain-driven semiconductor-to-half-metal transition, enabled by the selective closure of its spin-down band gap while preserving a robust ferromagnetic ground state. Remarkably, this transition is accompanied by a giant, non-monotonic violation of the Wiedemann-Franz law, with the Lorenz number enhanced up to 7.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2025
Niels Bohr Institute, University of Copenhagen, Kobenhavn, Capital Region of Denmark 2100, Denmark.
Increasing evidence suggests that active matter exhibits instances of mixed symmetry that cannot be fully described by either polar or nematic formalism. Here, we introduce a minimal model that integrates self-propulsion into the active nematic framework. Our linear stability analyses reveal how self-propulsion shifts the onset of instability, fundamentally altering the dynamical landscape.
View Article and Find Full Text PDFNature
September 2025
Natural History Sciences, IIL, Hokkaido University, Sapporo, Japan.
Carbonaceous asteroids are the source of the most primitive meteorites and represent leftover planetesimals that formed from ice and dust in the outer Solar System and may have delivered volatiles to the terrestrial planets. Understanding the aqueous activity of asteroids is key to deciphering their thermal, chemical and orbital evolution, with implications for the origin of water on the terrestrial planets. Analyses of the objects, in particular pristine samples returned from asteroid Ryugu, have provided detailed information on fluid-rock interactions within a few million years after parent-body formation.
View Article and Find Full Text PDF