Bionic Synthesis of Mussel-like Adhesive L-DMA and Its Effects on Asphalt Properties.

Materials (Basel)

State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China.

Published: August 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cracks are inevitable during the service life of asphalt pavement and the water at the fracture surfaces tends to cause the grouting materials to fail. Studies have shown that the catechol groups in adhesion proteins secreted by mussels can produce strong adhesion performance in the water. In this paper, the mussel-like adhesive L-Dopa Methacrylic anhydride (L-DMA) was prepared based on the concept of bionic design and used to improve the properties of asphalt. By using Fourier-transform infrared spectroscopy (FTIR) and Thermogravimetric analysis (TGA), the thermal stability and structural composition of L-DMA were investigated. Then, the rheological and low-temperature properties of L-DMA-modified asphalt were investigated using the dynamic shear rheological (DSR) test and bending beam rheological (BBR) test. Moreover, the modification mechanism was explored by FTIR. It was found that L-DMA can be effectively synthesized and has good thermal stability. The incorporation of L-DMA increases the composite modulus, viscosity, creep recovery rate and rutting factor of asphalt binder, resulting in an enhancement of its high-temperature performance. At a high L-DMA content of 10%, the low-temperature performance of the modified asphalt was enhanced. The modification of L-DMA to asphalt is mainly a physical process. Hydrogen bonds and conjugated systems generated by the introduction of catechol groups enhance the adhesion properties of asphalt. In general, L-DMA improves the properties of asphalt and theoretically can improve the water resistance of asphalt, which will be explored in future research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370006PMC
http://dx.doi.org/10.3390/ma15155351DOI Listing

Publication Analysis

Top Keywords

properties asphalt
12
asphalt
10
mussel-like adhesive
8
l-dma
8
catechol groups
8
thermal stability
8
properties
5
bionic synthesis
4
synthesis mussel-like
4
adhesive l-dma
4

Similar Publications

Study on the Filler Composition Optimization and Performance Evaluation of Cold-Patch Asphalt Mixture.

Materials (Basel)

August 2025

Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang'an University, Xi'an 710064, China.

Filler dramatically affects the rheology of cold-patched asphalt (CPA) slurry, as well as the related mechanical properties; its physical and chemical properties will also affect the road performance of cold-patch asphalt mixture (CPAM). In order to optimize the filler composition ratio for CPAM, this study uses an orthogonal test to determine the optimal ratio of bentonite to cement, partially substituting mineral powder. Additionally, a performance verification test suitable for CPAM is designed and performed.

View Article and Find Full Text PDF

Three-dimensional reconstruction programs are essential tools for understanding the behavior of asphalt mixtures. On the basis of accurate 3D models, it is convenient to identify the complex relationship between spatial structures and physical properties. In this work, we explore a low-cost and data-efficient way to create a collection of 3D asphalt mixture models.

View Article and Find Full Text PDF

To prolong the service life of asphalt pavement and reduce its maintenance cost, a fiber Bragg grating (FBG) sensor encapsulated in carboxylated carbon nanotube (CNT-COOH)-modified gel material suitable for strain monitoring of asphalt pavement was developed. Through tensile and bending tests, the effects of carboxylated carbon nanotubes on the mechanical properties of gel materials under different dosages were evaluated and the optimal dosage of carbon nanotubes was determined. Infrared spectrometer and scanning electron microscopy were used to compare and analyze the infrared spectra and microstructure of carbon nanotubes before and after carboxyl functionalization and modified gel materials.

View Article and Find Full Text PDF

Plastics are widely used as modifiers to enhance asphalt pavement performance due to their distinctive molecular structure. However, there is still limited theoretical analysis of the effect of plastics on the aging behavior of SBS-modified asphalt on a molecular scale. Therefore, in this study, molecular dynamics software was used to establish aging behavior of SBS-modified asphalt with different types of plastics (polyethylene (PE), polypropylene (PP), and poly acrylic (PA)).

View Article and Find Full Text PDF

The warm-mix recycled asphalt mixture (RAM), which integrates the warm-mix technique with recycling technology, offers significant energy savings and promotes the effective use of waste materials, delivering both environmental and economic benefits. Therefore, this study selected Evotherm surface-active additive to investigate its impact on the properties of recycled asphalt binder and its corresponding mixture, compared and analyzed the differences between road properties of hot-mix RAM and warm-mix RAM, focusing on the water stability of warm-mix RAM and the safety mechanism of warm-mix additive. The results revealed that while Evotherm did not significantly alter the penetration, softening point, or ductility of recycled SBSMA, it enhanced the surface energy and aggregate adhesion.

View Article and Find Full Text PDF