Publications by authors named "Chenze Fang"

To prolong the service life of asphalt pavement and reduce its maintenance cost, a fiber Bragg grating (FBG) sensor encapsulated in carboxylated carbon nanotube (CNT-COOH)-modified gel material suitable for strain monitoring of asphalt pavement was developed. Through tensile and bending tests, the effects of carboxylated carbon nanotubes on the mechanical properties of gel materials under different dosages were evaluated and the optimal dosage of carbon nanotubes was determined. Infrared spectrometer and scanning electron microscopy were used to compare and analyze the infrared spectra and microstructure of carbon nanotubes before and after carboxyl functionalization and modified gel materials.

View Article and Find Full Text PDF

In order to solve various problems in traditional roads and extend their service life, new road materials have become a research hotspot. Polyurethane prepolymers (PUPs) and ceramic fibers (CFs), as materials with unique properties, were chosen due to their synergistic effect: PUPs provide elasticity and gel-like behavior, while CFs contribute to structural stability and high-temperature resistance, making them ideal for enhancing asphalt performance. PUPs, a thermoplastic and elastic polyurethane gel material, not only enhance the flexibility and adhesion properties of asphalt but also significantly improve the structural stability of composite materials when synergistically combined with CF.

View Article and Find Full Text PDF

Aiming at the problems of serious pavement temperature diseases, low efficiency and high loss of ice-breaking methods, high occupancy rate of waste tires and the low utilization rate and insufficient durability of rubber particles, this paper aims to improve the service level of roads and ensure the safety of winter pavements. A pavement material with high efficiency, low carbon and environmental friendliness for active snow melting and ice breaking is developed. Firstly, NaOH, NaClO and KH550 were used to optimize the treatment of rubber particles.

View Article and Find Full Text PDF

Winter pavement maintenance faces challenges in balancing large-scale upkeep and driving safety, particularly regarding the application of active slow-release materials. This study proposes a gel-modified salt-storing ceramsite asphalt mixture to enhance ice-melting capabilities through controlled salt release. By replacing a conventional coarse aggregate with salt-storing ceramsite in SMA-10 graded mixtures (0-80% content), we systematically evaluate its mechanical performance and de-icing functionality.

View Article and Find Full Text PDF

To address the issue of air pollution caused by automobile exhaust in China, a titanium dioxide/graphite carbon nitride (TiO/g-CN) composite photocatalyst capable of degrading automobile exhaust was prepared in this study. It was used as an additive to modify styrene--butadiene latex (SBR) emulsified asphalt. The basic properties of modified emulsified asphalt before and after aging were analyzed, and the dosage range of TiO/g-CN (TCN) was determined.

View Article and Find Full Text PDF

In order to solve the problems of high energy consumption in cement production, environmental pollution by coal gangue, shortage of aggregate resources in road engineering, and improvement of shrinkage performance of semi-rigid base materials, the properties of rubber powder slag-based polymer stabilized coal gangue materials were studied. On the basis of raw material tests, the mechanical properties and durability of slag-based geopolymer stabilized materials with different geopolymer content and coal gangue substitution rate were studied. The unconfined compressive strength, indirect tensile strength, compressive rebound modulus, freeze-thaw and dry shrinkage tests of geopolymer stabilized crushed stone/coal gangue (GSS/GSG) mixtures with different rubber powder contents were carried out.

View Article and Find Full Text PDF

In recent years, eucommia ulmoides gum (EUG), also known as gutta-percha, has been extensively researched. Molecular dynamic simulations and experiments were used together to look at how well gutta-percha and asphalt work together and how gutta-percha-modified asphalt works. To investigate the gutta-percha and asphalt blending systems, the molecular models of asphalt and various dosages of gutta-percha-modified asphalt were set up using Materials Studio (MS), and the solubility parameters, intermolecular interaction energy, diffusion coefficient, and mechanical properties (including elastic modulus, bulk modulus, and shear modulus) of each system were calculated using molecular dynamic simulations at various temperatures.

View Article and Find Full Text PDF

The three-point bending fatigue tests were carried out in order to accurately predict the fatigue life of an asphalt mixture based on the plateau value (PV) of the dissipated strain energy ratio (DSER). The relations of the dissipated strain energy (DSE) to the stress-strength ratio, temperature and loading rate were studied, and the constructions of the mathematical models of DSE and DSER were completed based on the change laws of the DSE. The relation of the fatigue life to the PV was determined based on the analysis of damage evolution, based on which the fatigue equation was established and used to predict the fatigue life.

View Article and Find Full Text PDF

Laboratory predictions for the fatigue life of an asphalt mixture under cyclic loading based on the plateau value (PV) of the permanent deformation ratio (PDR) were carried out by three-point bending fatigue tests. The influence of test conditions on the recovery ratio of elastic deformation (RRED), the permanent deformation (PD) and PDR, and the trends of RRED, PD, and PDR were studied. The damage variable was defined by using PDR, and the relation of the fatigue life to PDR was determined by analyzing the damage evolution process.

View Article and Find Full Text PDF