Structural basis of the bHLH domains of MyoD-E47 heterodimer.

Biochem Biophys Res Commun

Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, 200092, Shanghai, China. Electronic address:

Published: September 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The basic helix-loop-helix (bHLH) family is one of the most conserved transcription factor families that plays an important role in regulating cell growth, differentiation and tissue development. Typically, members of this family form homo- or heterodimers to recognize specific motifs and activate transcription. MyoD is a vital transcription factor that regulates muscle cell differentiation. However, it is necessary for MyoD to form a heterodimer with E-proteins to activate transcription. Even though the crystal structure of the MyoD homodimer has been determined, the structure of the MyoD heterodimer in complex with the E-box protein remains unclear. In this study, we determined the crystal structure of the bHLH domain of the MyoD-E47 heterodimer at 2.05 Å. Our structural analysis revealed that MyoD interacts with E47 through a hydrophobic interface. Moreover, we confirmed that heterodimerization could enhance the binding affinity of MyoD to E-box sequences. Our results provide new structural insights into the heterodimer of MyoD and E-box protein, suggesting the molecular mechanism of transcription activation of MyoD upon binding to E-box protein.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2022.06.071DOI Listing

Publication Analysis

Top Keywords

e-box protein
12
myod-e47 heterodimer
8
transcription factor
8
activate transcription
8
myod
8
crystal structure
8
structure myod
8
myod e-box
8
heterodimer
5
transcription
5

Similar Publications

Snai2 is a transcription factor that inhibits the proliferation of cervical cancer cells and tumor growth. The expression of Snai2 inhibited the expression of β-catenin and impaired Wnt/β-catenin signaling pathway activity. The results of the RNA sequence in Snai2-overexpressing cervical cancer cells implied a strong correlation between Snai2 and TRIM31 with ubiquitin ligase activity.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is common and deadly, often leading to metastasis, challenging treatment, and poor outcomes. Understanding its molecular basis is crucial for developing effective therapies.

Aims: This study aimed to investigate the role of Myosin Heavy Chain 11 (MYH11) in CRC progression, especially its effects on epithelial-mesenchymal transition (EMT) and cell behavior, and to explore its potential regulation by the EMT transcription factor zinc finger E-box binding homeobox 1 (ZEB1).

View Article and Find Full Text PDF

FTOregulated mA modification of primiR139 represses papillary thyroid carcinoma metastasis.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

May 2025

Department of Information Network Center, Third Xiangya Hospital, Central South University, Changsha 410013, China.

Objectives: Increasing detection of low-risk papillary thyroid carcinoma (PTC) is associated with overdiagnosis and overtreatment. N6-methyladenosine (mA)-mediated microRNA (miRNA) dysregulation plays a critical role in tumor metastasis and progression. However, the functional role of mA-miRNAs in PTC remains unclear.

View Article and Find Full Text PDF

Overexpression of the proto-oncogene MYC occurs in >70% of cancers and is especially prevalent in breast cancer. Myc partners with transcription factor Max to bind to the E-box DNA response element. By patterning our frankenproteins on the basic region/helix-loop-helix/leucine zipper motif of Max, we designed MEF and MEF/C93 to bind to the E-box.

View Article and Find Full Text PDF

Cancer progression is often accompanied by epigenetic silencing of tumor-suppressor microRNAs such asmiR-200c, a key regulator of epithelial-to-mesenchymal transition (EMT) and metastasis. Given the reversible nature of DNA methylation, we employed a CRISPR/dCas9-TET1 system to target the miR-200c promoter and restore its expression in MCF-7 and MDA-MB-231 breast cancer cell lines. Two gRNAs were designed to flank CpG-rich regions of the miR-200c promoter, and their individual or combined delivery enabled site-specific demethylation.

View Article and Find Full Text PDF