Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this paper, we present an overview of the latest achievements in surface acoustic wave (SAW) sensors for gas or liquid fluid, with a focus on the electrodes' topology and signal processing, as related to the application of the sensing device. Although the progress in this field is mainly due to advances in the materials science and the sensing coatings, the interdigital (IDT) electrodes' organization is also an important tool for setting the acoustic-wave-distribution mode, and, thus, for improvement of the SAW performance. The signal-conditioning system is of practical interest, as the implementation of the SAW, as a compact and mobile system is dependent on this electronic circuit. The precision of the detection of the SAW platform is related not only to the IDT electrodes' geometry but also to their location around the sensing layer. The most commonly used architectures are shown in the present paper. Finally, we identify the needs for the future improvement of these prospective sensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269843PMC
http://dx.doi.org/10.3390/s22134917DOI Listing

Publication Analysis

Top Keywords

surface acoustic
8
acoustic wave
8
wave sensors
8
idt electrodes'
8
progress topologies
4
topologies surface
4
sensors corresponding
4
corresponding electronic
4
electronic processing
4
processing circuits
4

Similar Publications

This study presents a non-destructive method for estimating surface acoustic wave attenuation, which is highly sensitive to microstructural features, especially at high frequencies. The method uses a single wideband dispersive interdigital transducer (IDT) that remotely emits acoustic waves at the sample's edge. Chirp compression of the temporal displacement response is achieved by correlating the excitation signal with the spatial configuration of the IDT's electrodes.

View Article and Find Full Text PDF

A unified fast multipole boundary element method for acoustic scattering from objects near a fluid-fluid interface.

J Acoust Soc Am

September 2025

Centre for Marine Science and Technology, Curtin University, Perth, Western Australia 6102, Australia.

The unified fast multipole boundary element method (FMBEM) has been adapted to treat acoustic scattering from an elastic inclusion located near to (or embedded on) the interface between two semi-infinite fluid half-spaces. The parallel broadband Helmholtz FMBEM is used to model each fluid domain, while the elastic inclusion is modelled using either the finite element method, or an analogous elastodynamic FMBEM. The boundary integral equation for each fluid half-space is formulated to account for the transmission and reflection of the incident acoustic field from the planar surface of the interface, and so only the scattered field from the elastic inclusion and/or localised surface scattering features on the interface surface are evaluated.

View Article and Find Full Text PDF

Upstream fish movement in the Danube River at the Iron Gate is blocked by the massive hydropower dams and ship locks, as shown by tracking six fish species (vimba bream Vimba vimba, common nase Chondrostoma nasus, barbel Barbus barbus, asp Leuciscus aspius, Pontic shad Alosa immaculata and common carp Cyprinus carpio). In the absence of effective fish passage systems, the current level of river connectivity is insufficient to support upstream movement and migration for this diverse, multispecies fish community. The tagged cyprinids displayed evidence of migratory behaviour.

View Article and Find Full Text PDF

Assessing the mechanical properties of soft tissues holds broad clinical relevance. Advances in flexible electronics offer possibilities for wearable monitoring of tissue stiffness. However, existing technologies often rely on tethered setups or require frequent calibration, restricting their use in ambulatory environments.

View Article and Find Full Text PDF

Passive localization of dual targets in deep-ocean direct-arrival zone using a horizontal line array.

JASA Express Lett

September 2025

State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China.

The passive localization of dual targets composed of a surface ship and a submerged source located nearby beneath the ship is an intriguing problem. This study develops a passive localization method based on multipath arrival angles for dual targets, with similar source levels in the deep-ocean direct arrival zone, using a horizontal line array. Compared to the classical minimum variance distortionless response method, the sparse Bayesian learning method is used to improve resolution for multipath arrival angles under coherent signal conditions, enhancing both the effective range and localization accuracy.

View Article and Find Full Text PDF