98%
921
2 minutes
20
The unified fast multipole boundary element method (FMBEM) has been adapted to treat acoustic scattering from an elastic inclusion located near to (or embedded on) the interface between two semi-infinite fluid half-spaces. The parallel broadband Helmholtz FMBEM is used to model each fluid domain, while the elastic inclusion is modelled using either the finite element method, or an analogous elastodynamic FMBEM. The boundary integral equation for each fluid half-space is formulated to account for the transmission and reflection of the incident acoustic field from the planar surface of the interface, and so only the scattered field from the elastic inclusion and/or localised surface scattering features on the interface surface are evaluated. In the absence of specialised methods to absorb the outgoing waves, the scattered field will reflect from the edge of the truncated boundary element mesh representing the fluid-fluid interface. Numerical examples demonstrate that the resulting errors can be minimised when the truncated mesh is made a few times larger than the scattering feature. The boundary-only discretisation of the truncated fluid-fluid interface, O(N log N) computational cost of the FMBEM, and simplified truncation of the boundary mesh yield a computationally efficient model for fully three-dimensional analysis for this type of problem configuration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/10.0039113 | DOI Listing |
J Prosthet Dent
September 2025
Full Professor, School of Mechanical Engineering, Universidad Industrial de Santander, Bucaramanga, Colombia. Electronic address:
Statement Of Problem: Although custom temporomandibular joint (TMJ) prostheses manufactured via computer-aided design and manufacturing (CAD-CAM) and produced through 3-dimensional (3D) printing or computer numerical control (CNC) allow for sagittal curvature adjustments in the glenoid fossa, their design remains unregulated by the Food and Drug Administration. Consequently, the geometry is determined largely by the engineer's discretion, with limited biomechanical evidence to guide these decisions. The lack of validation regarding how sagittal curvature influences joint stress distribution under various anatomical and functional conditions represents a gap in current knowledge that warrants investigation.
View Article and Find Full Text PDFJ Craniofac Surg
September 2025
Department of Craniomaxillofacial Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Plastic Surgery Hospital, Beijing, China.
Objective: We designed a new distractor pairing a bioabsorbable upper fixing plate fixed by bioabsorbable screws with a traditional titanium distractor to simplify the second surgery removing the distractor after mandibular distraction osteogenesis. The present study aims to evaluate its biomechanical properties using finite element method.
Materials And Methods: Ten computer-aided designed models simulating mandibles of 5 patients under 2 working conditions, the instance of distraction and mastication, were produced.
J Acoust Soc Am
September 2025
School of Electrical and Computer Engineering, Tel Aviv University, Tel Aviv 69978, Israel.
This paper presents relatively simple formulations of the problem of acoustic scattering by flooded and hollow elastic shells immersed in fluids, which can serve as a basis for efficient numerical models. The full rigorous formulation of the problem, which involves the Helmholtz equations for acoustic pressures in the fluids and the Navier equation for three-dimensional displacements in the elastic material, is reduced to a boundary value problem only for the Helmholtz equations with effective boundary conditions relating the boundary pressures and normal displacements on both sides of the shell. To that end, the thin elastic shell is regarded as a neighborhood of its midsurface, and the boundary values of the elastic quantities (displacements and stresses) are expressed via their expansions about the midsurface, considering the shell thickness as a small parameter.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.
Objective: Due to its inherent high instability, the selection of fixation strategies for unilateral Denis type II sacral fractures remains a controversial challenge in the field of traumatic orthopedics. This study focuses on unilateral Denis type II sacral fractures. By applying three different fixation methods, it aims to explore their biomechanical properties and provide a theoretical basis for optimizing clinical fixation protocols.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
September 2025
Department of Industrial and Manufacturing Engineering, Pennsylvania State University, University Park, Pennsylvania, USA.
The screw-retained implant-supported crown is a durable, aesthetic restoration, but debonding between the crown and abutment remains a challenge to survivability. The purpose of this work was to devise an abutment shape that can be embedded into the crown while the crown is being additively manufactured. The result was a mechanically retained, no-adhesive abutment and crown unit that is mounted to the implant fixture.
View Article and Find Full Text PDF