98%
921
2 minutes
20
The insecticidal nature of Cry δ-endotoxins produced by Bacillus thuringiensis is generally attributed to their ability to form transmembrane pores, causing lysis of target insect cells. Previously, the truncated tertiary structure of the chymotrypsin-treated Cry4Ba toxin lacking the N-terminal helices-α1 and α2 was reported. To elucidate a more complete functional structure, a 65-kDa trypsin-activated form of the Cry4Ba-R203Q mutant toxin was thus generated for X-ray crystallography by eliminating the Arg-tryptic cleavage site. The 2.0 Å crystal structure of Cry4Ba-R203Q with R-factor of 21.5% and R of 23.7.%, as subsequently improved with homology-based modeling and molecular dynamics (MD) simulations, revealed a wedge-shaped arrangement of three domains: a well-defined N-terminal domain of eight α-helices (α1, α2a, α2b, α3, α4, α5, α6 and α7) responsible for pore formation, a three-β-sheet prism displaying two functional motifs and a C-terminal β-sandwich domain. A full-atom structural model of the Cry4Ba pre-pore trimer constructed using a single-particle 3D-reconstructed template revealed that each toxin monomer forms the stable trimer by packing α3 and α4 together at the central interface. When MD simulations of a membrane-associated trimeric pore model comprising three α4-loop-α5 hairpins were performed, an stable open-pore structure at the membrane-water interface was clearly observed. Two conserved side-chains-Asn and Tyr in the α4-α5 loop were found to interact directly with phospholipid head groups, leading to pore opening and stability. Overall data provide the first complete view of the 3D structure of the Cry4Ba mosquito-active toxin and its trimeric pore architecture, underlining the importance of two critical loop residues-Asn and Tyr.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2022.06.065 | DOI Listing |
Biotechnol Lett
September 2025
Unit of Microbiology and Immunology, Vector Control Research Centre, Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Puducherry, 605006, India.
Effective mosquito control is essential for reducing the transmission of vector-borne diseases. This study focuses on the comprehensive characterization of mosquitocidal toxins produced by Bacillus thuringiensis serovar israelensis (Bti) VCRC B646 and the associated insecticidal genes. The bacterium was cultured, and the spore-crystal complex was purified to identify the mosquitocidal proteins.
View Article and Find Full Text PDFBeilstein J Nanotechnol
August 2025
Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun 130052, Jilin, People's Republic of China.
To address the issue of biological pollution in cellulose triacetate (CTA) membranes during seawater desalination, silver (Ag) nanoparticles were incorporated onto the CTA surface using polydopamine (PDA). PDA, which contains phenolic and amino groups, exhibits excellent adhesiveness and provides active sites for the attachment and reduction for Ag nanoparticles. Various characterizations confirm the successful introduction of Ag nanoparticles onto the surface of the PDA-modified CTA (PCTA) membrane and the preservation of CTA microstructures.
View Article and Find Full Text PDFProtein Pept Lett
September 2025
Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand.
Background: Bacillus thuringiensis Cry toxins are well known for their insecticidal properties, primarily through the formation of ion-leakage pores via α4-α5 hairpins. His178 in helix 4 of the Cry4Aa mosquito-active toxin has been suggested to play a crucial role in its biotoxicity.
Objective: This study aimed to investigate the functional importance of Cry4Aa-His178 through experimental and computational analyses.
Pestic Biochem Physiol
November 2025
Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100
The insect midgut peritrophic membrane (PM) plays important roles in insect-microbe interactions. Bacillus thuringiensis (Bt) and its proteinaceous toxins are widely used for insect control. To understand the role of PM in insects against Bt toxins, this study selected Grapholita molesta Busck (Lepidoptera: Tortricidae), a worldwide pest infesting fruit trees, as the research subject.
View Article and Find Full Text PDF