98%
921
2 minutes
20
Alzheimer's disease (AD) is the most-common cause of neurodegenerative dementia, and it is characterized by abnormal amyloid and tau accumulation, which indicates neurodegeneration. AD has mostly been diagnosed clinically. However, ligand-specific positron emission tomography (PET) imaging, such as amyloid PET, and cerebrospinal fluid (CSF) biomarkers are needed to accurately diagnose AD, since they supplement the shortcomings of clinical diagnoses. Using biomarkers that represent the pathology of AD is essential (particularly when disease-modifying treatment is available) to identify the corresponding pathology of targeted therapy and for monitoring the treatment response. Although imaging and CSF biomarkers are useful, their widespread use is restricted by their high cost and the discomfort during the lumbar puncture, respectively. Recent advances in AD blood biomarkers shed light on their future use for clinical purposes. The amyloid β (Aβ)42/Aβ40 ratio and the concentrations of phosphorylated tau at threonine 181 and at threonine 217, and of neurofilament light in the blood were found to represent the pathology of Aβ, tau, and neurodegeneration in the brain when using automatic electrochemiluminescence technologies, single-molecule arrays, immunoprecipitation coupled with mass spectrometry, etc. These blood biomarkers are imminently expected to be incorporated into clinical practice to predict, diagnose, and determine the stage of AD. In this review we focus on advancements in the measurement technologies for blood biomarkers and the promising biomarkers that are approaching clinical application. We also discuss the current limitations, the needed further investigations, and the perspectives on their use.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9262460 | PMC |
http://dx.doi.org/10.3988/jcn.2022.18.4.401 | DOI Listing |
Cell Physiol Biochem
September 2025
Department of General Practice, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China, E-Mail:
Background/aims: Ubiquitin D (UBD), a member of the ubiquitin-like modifier (UBL) family, is significantly overexpressed in various cancers and is positively correlated with tumor progression. However, the role and underlying mechanisms of UBD in rheumatoid arthritis (RA) remain poorly understood. This study aimed to investigate the effects of UBD knockdown on the progression of RA.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha 410008.
Objectives: Patients with connective tissue diseases (CTD) have a high incidence of cardiac involvement, which often presents insidiously and can progress rapidly, making it one of the leading causes of death. Multiparametric cardiovascular magnetic resonance (CMR) provides a comprehensive quantitative evaluation of myocardial injury and is emerging as a valuable tool for detecting cardiac involvement in CTD. This study aims to investigate the correlations between CMR features and serological biomarkers in CTD patients, assess their potential clinical value, and further explore the impact of pre-CMR immunotherapy intensity on CMR-specific parameters, thereby evaluating the role of CMR in the early diagnosis of CTD-related cardiac involvement.
View Article and Find Full Text PDFAnticancer Drugs
September 2025
Department of Blood and Marrow Transplantation, Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer.
Bortezomib resistance in multiple myeloma (MM) is a significant clinical challenge that limits the long-term effectiveness. Currently, there is a lack of reliable biomarkers to predict bortezomib resistance. Previous studies reported that several proteins regulate bortezomib resistance through targeting ubiquitin-proteasome pathways, including heat shock protein family A member 9 (HSPA9), dickkopf Wnt signaling pathway inhibitor 1 (DKK1), proteasome 26S subunit non-ATPase 14 (PSMD14), and tripartite motif containing 21 (TRIM21).
View Article and Find Full Text PDFJ Neurochem
September 2025
Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
Elucidating the earliest biological mechanisms underlying Alzheimer's disease (AD) is critical for advancing early detection strategies. While amyloid-β (Aβ) and tau pathologies have been central to preclinical AD research, the roles of peripheral biological processes in disease initiation remain underexplored. We investigated patterns of F-MK6240 tau positron emission tomography (PET) and peripheral inflammation across stages defined by Aβ burden and neuronal injury in n = 132 (64.
View Article and Find Full Text PDFBr J Haematol
September 2025
First Department of Medicine-Hematology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.
Circulating tumour DNA (ctDNA) is a promising biomarker for diffuse large B-cell lymphoma (DLBCL) risk stratification and treatment response assessment, but real-world studies were limited. Using a targeted sequencing approach (521-gene panel), we showed that (1) baseline ctDNA level correlated with tumour burden and was an independent predictor of treatment outcome, (2) achievement of minimal residual disease (MRD) negativity was associated with a better treatment outcome and (3) interim MRD-positivity combined with positron emission tomography/computed tomography scan-positivity identified a high-risk subgroup of DLBCL patients. Baseline ctDNA level and treatment related achievement of MRD negativity are valuable prognostic tools in DLBCL to improve risk stratification in routine clinical practice.
View Article and Find Full Text PDF