98%
921
2 minutes
20
Background: Heterosis is a phenomenon that hybrids show superior performance over their parents. The successful utilization of heterosis has greatly improved rice productivity, but the molecular basis of heterosis remains largely unclear.
Results: Here, the transcriptomes of young panicles and leaves of the two widely grown two-line super hybrid rice varieties (Jing-Liang-You-Hua-Zhan (JLYHZ) and Long-Liang-You-Hua-Zhan (LLYHZ)) and their parents were analyzed by RNA-seq. Transcriptome profiling of the hybrids revealed 1,778 ~ 9,404 differentially expressed genes (DEGs) in two tissues, which were identified by comparing with their parents. GO, and KEGG enrichment analysis showed that the pathways significantly enriched in both tissues of two hybrids were all related to yield and resistance, like circadian rhythm (GO:0,007,623), response to water deprivation (GO:0,009,414), and photosynthetic genes (osa00196). Allele-specific expression genes (ASEGs) were also identified in hybrids. The ASEGs were most significantly enriched in ionotropic glutamate receptor signaling pathway, which was hypothesized to be potential amino acid sensors in plants. Moreover, the ASEGs were also differentially expressed between parents. The number of variations in ASEGs is higher than expected, especially for large effect variations. The DEGs and ASEGs are the potential reasons for the formation of heterosis in the two elite super hybrid rice.
Conclusions: Our results provide a comprehensive understanding of the heterosis of two-line super hybrid rice and facilitate the exploitation of heterosis in hybrid rice breeding with high yield heterosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9245205 | PMC |
http://dx.doi.org/10.1186/s12870-022-03697-4 | DOI Listing |
Angew Chem Int Ed Engl
September 2025
Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, 200444, China.
Self-assembled DNA nanostructures have been popularly used to develop DNA-based electrochemical sensors by exploiting the nanoscale positioning capability of DNA origami. However, the impact of the electric field on the structural stability of the DNA origami framework and the activity of carried DNA probes remains to be explored. Herein, we employ DNA origami as structural frameworks for reversible DNA hybridization, and develop a single-molecule fluorescence imaging method to quantify electric field effects on DNA conformation and hybridization properties at the single-molecule level.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea. Electronic address:
We present a supramolecular templating strategy for inducing chirality in hybrid perovskites via confined crystallization within chiral super spaces-nanoconfined, helically ordered cavities formed by the self-assembly of achiral bent-core molecules with chiral additives. Upon removal of the additives, the resulting porous films retain permanent chirality. Quasi-2D hybrid organic-inorganic perovskites crystallized within these templates exhibit distinct chiroptical activity, including mirror-image circular dichroism and circularly polarized light emitting (CPLE), with CPLE dissymmetry factors reaching up to 1.
View Article and Find Full Text PDFQuant Imaging Med Surg
September 2025
Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Background: Super-resolution deep learning reconstruction (SR-DLR) algorithm has emerged as a promising image reconstruction technique for improving the image quality of coronary computed tomography angiography (CCTA) and ensuring accurate CCTA-derived fractional flow reserve (CT-FFR) assessments even in problematic scenarios (e.g., the presence of heavily calcified plaque and stent implantation).
View Article and Find Full Text PDFMicrosc Res Tech
September 2025
Center for Optical Technologies, Aalen University, Aalen, Germany.
Understanding the intracellular fate of nanoparticles (NPs) is essential for advancing nanomedicine, particularly in targeted drug delivery for cancer therapy. Here, we present a complementary cryogenic microscopy workflow across scales to investigate the uptake and subcellular localization of zirconyl-containing inorganic-organic hybrid nanoparticles (IOH-NPs) in murine breast cancer cells. Our approach integrates cryogenic fluorescence microscopy (cryo-FM), cryo-focused ion beam scanning electron microscopy (cryo-FIBSEM), and cryo-soft X-ray tomography (cryo-SXT), enabling molecular specificity, high-resolution imaging, and volumetric ultrastructural analysis in near-native cellular states.
View Article and Find Full Text PDFEntropy (Basel)
August 2025
MONARIS, CNRS, Campus Pierre et Marie Curie, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France.
The "abnormal" properties of ice and liquid water can be explained by a hybrid quantum/classical framework based on objective facts. Internal decoherence due to the low dissociation energy of the H-bond and the strong electric dipole moment lead to a quantum condensate of O atoms dressed with classical oscillators and a degenerate electric field. These classical oscillators are either subject to equipartition in the liquid or enslaved to the field interference in the ice.
View Article and Find Full Text PDF