Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Calcium-dependent protein kinases (CDPKs) are a class of serine/threonine protein kinases encoded by several gene families that play key roles in stress response and plant growth and development. In this study, the BLAST method was used to search for protein sequences of the potato Calcium-dependent protein kinase gene family. The chromosome location, phylogeny, gene structures, gene duplication, cis-acting elements, protein-protein interaction, and expression profiles were analyzed. Twenty-five CDPK genes in the potato genome were identified based on RNA-seq data and were clustered into four groups (I-IV) based on their structural features and phylogenetic analysis. The result showed the composition of the promoter region of the gene, including light-responsive elements such as Box4, hormone-responsive elements such as ABRE, and stress-responsive elements such as MBS. Four pairs of segmental duplications were found in StCDPKs genes and the Ka/Ks ratios were below 1, indicating a purifying selection of the genes. The protein-protein interaction network revealed defense-related proteins such as; respiratory burst oxidase homologs (RBOHs) interacting with potato CDPKs. Transcript abundance was measured RT-PCR between the two cultivars and their relative expression of CDPK genes was analyzed after 15, 20, and 25 days of drought. There were varied expression patterns of and , between the two potato cultivars under mannitol induced-drought conditions. Correlation analysis showed that and may be the major differentially expressed genes involved in the regulation of malondialdehyde (MDA) and proline content in response to drought stress, opening a new research direction for genetic improvement of drought resistance in potato.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9164159PMC
http://dx.doi.org/10.3389/fgene.2022.874397DOI Listing

Publication Analysis

Top Keywords

calcium-dependent protein
12
protein kinases
12
gene family
8
drought stress
8
protein-protein interaction
8
cdpk genes
8
gene
6
potato
6
protein
5
genes
5

Similar Publications

Transcriptome analysis of shade-induced growth and photosynthetic responses in soybean cultivars.

PLoS One

September 2025

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRl). Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Bei

Shade stress alters soybean growth through transcriptomic changes and adaptive responses that optimize light capture and utilization, regulated by a phytohormonal network. This study examined the physiological, morphological, and molecular responses of Guru (shade-tolerant) and Heinong 53 (shade-sensitive) soybean cultivars under 0% (control), 30%, and 70% shade. Results revealed morphological responses where Heinong 53 exhibited greater plant height (52.

View Article and Find Full Text PDF

Background: Cardiac ischemia reperfusion (I/R) injury is a serious consequence of reperfusion therapy for myocardial infarction (MI). Peptidylarginine deiminase 4 (PAD4) is a calcium-dependent enzyme that catalyzes the citrullination of proteins. In previous studies, PAD4 inhibition protected distinct organs from I/R injury by preventing the formation of neutrophil extracellular traps (NETs) and attenuating inflammatory responses.

View Article and Find Full Text PDF

CALCIUM-DEPENDENT PROTEIN KINASES (CDPKs/CPKs) are central components in plant signaling networks, orchestrating growth, development, and stress responses. However, their functions in thermomorphogenesis-an essential thermal-adaptation response-particularly their coordination with the core transcription factors PHYTOCHROME-INTERACTING FACTORs 4 and 7 (PIF4 and PIF7), remains elusive. Here we show that AtCPK4/5/6/11/12 physically interact with PIF4 and PIF7.

View Article and Find Full Text PDF

Maintaining robust plant vigor is essential for sustaining crop productivity, yet the precise roles and molecular underpinnings of G protein γ subunits in this process remain elusive. This study reveals that GGC1 is under selection during tomato domestication, and its mutants exhibit enhanced plant vigor, characterized by superior growth, increased yield, and improved fruit quality. In contrast, triple mutants gga1/ggb1/ggb2 display severely compromised vigor resembling slgb1 mutants lacking the Gβ subunit.

View Article and Find Full Text PDF

Differential regulation of calcium-activated plant kinases in Arabidopsis thaliana.

Plant J

September 2025

Biological Information Processing Group, BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.

The decoding of calcium signals by plant calcium-dependent kinases (CPKs) is not fully understood yet. Based on kinetic in vitro measurements of the activity of several CPK proteins, their individual activity profile was modeled and coupled to cytosolic calcium concentration changes from in vivo measurements of guard cells and epidermal leaf cells. In addition, computationally produced surrogate data were used.

View Article and Find Full Text PDF