98%
921
2 minutes
20
Hydrogen, a new energy carrier that can replace traditional fossil fuels, is seen as one of the most promising clean energy sources. The use of renewable electricity to drive hydrogen production has very broad prospects for addressing energy and environmental problems. Therefore, many researchers favor electrolytic water due to its green and low-cost advantages. The electrolytic water reaction comprises the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). Understanding the OER and HER mechanisms in acidic and alkaline processes contributes to further studying the design of surface regulation of electrolytic water catalysts. The OER and HER catalysts are mainly reviewed for defects, doping, alloying, surface reconstruction, crystal surface structure, and heterostructures. Besides, recent catalysts for overall water splitting are also reviewed. Finally, this review paves the way to the rational design and synthesis of new materials for highly efficient electrocatalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202202336 | DOI Listing |
Mater Horiz
September 2025
New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
Dispersing iridium onto high-specific-surface-area supports is a widely adopted strategy to maximize iridium utilization in anode catalysts of proton exchange membrane water electrolysis (PEMWE). However, here we demonstrate that the overall cell performance, including initial efficiency and long-term stability, does not benefit from the typical high specific surface area of catalyst supports. The conventional understanding that high iridium utilization on high-specific-surface-area supports increases activity holds only in aqueous electrolytes, while under the typical working conditions of PEMWE, the mass transport within the anode catalyst layers plays a more significant role in the overall performance.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China.
In this study, we unveil a critical function of anions in tailoring the interfacial water coordination environment and electronic structure at the Zn-electrolyte interface. These features thermodynamically hinder water-induced parasitic reactions, enabling highly reversible Zn plating/stripping. And the optimal electrolyte supports high-mass-loading applications in Zn-MnO batteries.
View Article and Find Full Text PDFJ Texture Stud
October 2025
Faculty of Chemical-Metallurgical Engineering, Department of Food Engineering, Istanbul Technical University, Sarıyer, Istanbul, Türkiye.
In this study, potato slices were fried in four different vegetable oils (corn, olive, palm olein, and sunflower) to investigate how oil type influences the characteristics of potato chips. The diffusion coefficient of oils was attempted to be correlated with the final moisture, oil uptake, and textural parameters of potato chips. The diffusion coefficients were determined using two approaches.
View Article and Find Full Text PDFWater Res
August 2025
State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Phosphorus is recognized as a major pollutant in municipal and domestic wastewater, but the effective removal of organic phosphorus (OP) using conventional wastewater treatment technologies is difficult. Herein, a novel visible light-enhanced Ti electrocoagulation (EC) technology was proposed for the removal of OP using 2-amino-ethyl phosphonic acid (AEP) as a model compound to elucidate the removal efficiency and mechanisms. The results showed that the irradiation under visible light (670 Lux) effectively enhanced the removal of AEP by Ti EC.
View Article and Find Full Text PDFOrg Lett
September 2025
College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, P. R. of China.
Using inexpensive NaBr as both the mediator and supporting electrolyte and acetonitrile/water as the solvent, a variety of aryl alkenes smoothly proceed under the electrochemical anti-Markovnikov hydration conditions to furnish β-aryl ethanol compounds in good yields. Gram-scale experiments, detailed pathway investigation and the transfomation of the products to arylpropionic acid based nonsteroidal anti-inflammatory drugs (NSAIDs), tiaprofenic acid and suprofen, further demonstrated the applicability of this protocol.
View Article and Find Full Text PDF