Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Breast cancer is the most common malignancy affecting women, yet effective targets and related candidate compounds for breast cancer treatment are still lacking. The lipogenic enzyme, stearoyl-CoA desaturase-1 (SCD1), has been considered a potential target for breast cancer treatment. Icaritin (ICT), a prenylflavonoid derivative from the Traditional Chinese Medicine Epimedii Herba, has been reported to exert anticancer effects in various types of cancer. The purpose of the present study was to explore the effect of the new ICT derivative, IC2, targeting SCD1 on breast cancer cells and to explore the specific mechanism.

Methods: Immunohistochemistry and semiquantitative evaluation were performed to detect the expression level of SCD1 in normal and tumor samples. Computer-aided drug design (CADD) technology was used to target SCD1 by molecular docking simulation, and several new ICT derivatives were prepared by conventional chemical synthesis. Cell viability was evaluated by an MTT assay and dead cell staining. SCD1 expression in cancer cells was determined by Western blot and qRT-PCR analyses. The enzymatic activity of SCD1 was evaluated by detecting the conversion rate of [d31] palmitic acid (PA) using Gas chromatography-mass spectrometry (GC-MS). DAPI staining, flow cytometry and Western blot were used to detect cell apoptosis. Mitochondrial membrane potential and reactive oxygen species (ROS) assays were used to determine cell mitochondrial function. Lentiviral transduction was utilized to generate SCD1-overexpressing cell lines.

Results: We found that SCD1 was overexpressed and correlated with poor prognosis in breast cancer patients. Among a series of ICT derivatives, in vitro data showed that IC2 potentially inhibited the viability of breast cancer cells, and the mechanistic study revealed that IC2 treatment resulted in ROS activation and cellular apoptosis. We demonstrated that IC2 inhibited SCD1 activity and expression in breast cancer cells in a dose-dependent manner. Moreover, SCD1 overexpression alleviated IC2-induced cytotoxicity and apoptosis in breast cancer cells.

Conclusions: The new ICT derivative, IC2, was developed to induce breast cancer cell apoptosis by inhibiting SCD1, which provides a basis for the development of IC2 as a potential clinical compound for breast cancer treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9153146PMC
http://dx.doi.org/10.1186/s12935-022-02621-yDOI Listing

Publication Analysis

Top Keywords

breast cancer
40
cancer cells
16
cancer
13
derivative ic2
12
cell apoptosis
12
cancer treatment
12
breast
10
scd1
10
ict derivative
8
ict derivatives
8

Similar Publications

Berberine (BBR) is an isoquinoline alkaloid with a variety of biological activities, including anti-microbial and anti-tumoral activities. However, the cellular targets of BBR and the roles of BBR in the radiosensitivity of breast cancer cells are not well defined. In this study, we investigated the effects of BBR on the radiosensitivity of BT549 triple-negative breast cancer cells.

View Article and Find Full Text PDF

Mendelian Randomization Study: The Impact of Gut Microbiota on Survival in HR+ Breast Cancer Patients Under Different Treatment Regimens Through the Modulation of Immune Cell Phenotypes.

Clin Breast Cancer

August 2025

Department of Pharmacy, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, School of Pharmacy, Fujian Medical University, Fuzhou, China. Electronic address:

Background: Emerging evidence suggests that the gut microbiota (GM) may influence the progression of breast cancer by modulating immune responses. Given the vast diversity of GM and immune cell phenotypes, this study aimed to utilize the most advanced and comprehensive data to explore the causal relationships among the GM, immune cell phenotypes, and survival rates in hormone receptor-positive (HR+) breast cancer patients under different treatment regimens.

Methods: We investigated the causal relationships between the GM, immune cell phenotypes, and survival rates in HR+ breast cancer patients treated with 11 distinct therapeutic strategies using Mendelian randomization.

View Article and Find Full Text PDF

[Development of an AI-based Positioning Technical Assistance System for Mammography].

Nihon Hoshasen Gijutsu Gakkai Zasshi

September 2025

Department of Radiological Technology, Faculty of Health Sciences, Gifu University of Medical Science.

Purpose: We aimed to develop an AI-based system to score the positioning in mammography (MG), with the goal of establishing a foundation for future technical support.

Methods: Using 800 mediolateral oblique (MLO) images, we developed an AI model (Mask Generation Model) for automatic extraction of three regions: the pectoralis major muscle, the mammary gland region, and the nipple. Using this model, we extracted three regions from 1544 MLO images and generated mask images.

View Article and Find Full Text PDF

Background: Breast-conserving surgery (BCS) is the primary surgical approach for patients with breast cancer. The accurate determination of surgical margins during BCS is critical for patient prognosis; however, time constraints and limitations in current pathological techniques often prevent pathologists from performing this assessment intraoperatively. The inability to reliably assess margins during surgery can lead to incomplete tumor removal and the need for additional surgeries.

View Article and Find Full Text PDF