98%
921
2 minutes
20
The rapid development of portable electronics has contributed to an urgent demand for versatile and flexible electrodes of wearable energy storage devices and pressure sensors. We fabricate a stretchable electrode by coupling the nickel-cobalt sulfide (NiCoS) nanosheet layer with Ag@NiCo nanowire (NW) networks. NiCoS wrinkled nanostructure, highly conductive networks, and intense interactions between substrate/networks and active materials/networks endow the electrodes with excellent energy storage capacity, superior electrochemical/mechanical stability, and good conductivity. A high-performance asymmetric supercapacitor is developed using the composite electrode. It operates in a wide potential window of 1.4 V and achieves a maximum energy density of 40.0 W h kg at a power density of 1.1 kW kg; it also exhibits excellent mechanical flexibility and good waterproof performance. Moreover, a sandwiched capacitive pressure sensor constructed using the same electrodes has a wide sensing range (up to 260 kPa), low detection limit (∼47 mN), fast response (∼66 ms), and excellent mechanical stability (10 000 cycles). This study demonstrates that the appropriate design of the functional electrode facilitates the construction of various high-performance devices, denoting the versatility of our electrodes in the development of wearable electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2nr01890j | DOI Listing |
RSC Adv
September 2025
Laboratory of Spectroscopic Characterization and Optical Materials, Faculty of Sciences, University of Sfax B.P. 1171 3000 Sfax Tunisia
Lithium metavanadate (LiVO) is a material of growing interest due to its monoclinic 2/ structure, which supports efficient lithium-ion diffusion through one-dimensional channels. This study presents a detailed structural, electrical, and dielectric characterization of LiVO synthesized a solid-state reaction, employing X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and impedance/dielectric spectroscopy across a temperature range of 473-673 K and frequency range of 10 Hz to 1 MHz. XRD and Rietveld refinement confirmed high crystallinity and single-phase purity with lattice parameters = 10.
View Article and Find Full Text PDFNatl Sci Rev
September 2025
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.
Contactless human-machine interfaces (C-HMIs) are revolutionizing artificial intelligence (AI)-driven domains, yet face application limitations due to narrow sensing ranges, environmental fragility, and structural rigidity. To address these obstacles, we developed a flexible photonic C-HMI (Flex-PCI) using flexible visible-blind near-infrared organic photodetectors. In addition to its unprecedented performance across key metrics, including broad detection range (0.
View Article and Find Full Text PDFPatterns (N Y)
July 2025
University of Washington, Department of Astronomy, Seattle, WA, USA.
Machine learning and artificial intelligence promise to accelerate research and understanding across many scientific disciplines. Harnessing the power of these techniques requires aggregating scientific data. In tandem, the importance of open data for reproducibility and scientific transparency is gaining recognition, and data are increasingly available through digital repositories.
View Article and Find Full Text PDFDalton Trans
September 2025
Laboratory for New Ceramics, Department of Ceramic Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India.
Polymer-derived ceramics are a versatile class of multifunctional materials synthesized the high-temperature treatment of a preceramic polymer. In this work, we report the synthesis of a vanadium carbide-embedded carbonaceous hybrid by pyrolyzing a modified preceramic polymer incorporating vanadium acetylacetonate in a polysilsesquioxane followed by hydrofluoric acid etching. The structural and microscopic characterisation confirmed the uniform distribution of nanoparticulate vanadium carbide in the matrix.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
We report the synthesis of three-dimensional (3D) graphene/mesoporous carbon/ZIF-derived microporous carbon (G/MC/ZDC-A) heterostructures through an interface-reinforced assembly. This hierarchical architecture synergistically integrates 2D graphene nanosheets with 0D ZDC nanoparticles a mesoporous carbon "binder", effectively mitigating the agglomeration issue while establishing continuous charge transport pathways. When configurated as symmetric supercapacitors with EMIMBF electrolyte, the obtained G/MC/ZDC-A demonstrates decent capacitive performance: a high specific capacitance (240 F g at 0.
View Article and Find Full Text PDF