Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Proteins have gained increasing success as therapeutic agents; however, challenges exist in effective and efficient delivery. In this work, we present a simple and versatile method for encapsulating proteins via complex coacervation with oppositely charged polypeptides, poly(l-lysine) (PLys) and poly(d/l-glutamic acid) (PGlu). A model protein system, bovine serum albumin (BSA), was incorporated efficiently into coacervate droplets via electrostatic interaction up to a maximum loading of one BSA per PLys/PGlu pair and could be released under conditions of decreasing pH. Additionally, encapsulation within complex coacervates did not alter the secondary structure of the protein. Lastly the complex coacervate system was shown to be biocompatible and interact well with cells in vitro. A simple, modular system for encapsulation such as the one presented here may be useful in a range of drug delivery applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/mz500529vDOI Listing

Publication Analysis

Top Keywords

complex coacervation
8
protein encapsulation
4
encapsulation polypeptide
4
complex
4
polypeptide complex
4
coacervation proteins
4
proteins gained
4
gained increasing
4
increasing success
4
success therapeutic
4

Similar Publications

Photoactivatable Synthetic Exosomes for RNA-Based Communication Between Artificial Cells and Living Cells.

Angew Chem Int Ed Engl

September 2025

Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.

Artificial cells are self-assembled microstructures engineered to replicate the functions of natural cells, such as the capacity to interact and communicate. Until now, communication between artificial and living cells has mainly been based on the exchange of small molecules. An important communication pathway in living systems, however, involves the exchange of bioactive molecules such as neurotransmitters and nucleic acids via their protected transport with vesicles or exosomes.

View Article and Find Full Text PDF

Complex coacervation has emerged as a powerful model for studying the self-assembly of intrinsically disordered proteins (IDPs) in biological condensates in cells. We characterized the phase behavior and rheology of coacervates formed from peptides with regular repeating sequences to examine the effects of charge patterning and hydrophobicity on coacervate stability and material properties. Our results show that increasing the size of charged blocks enhances salt resistance via electrostatic cooperativity, while incorporating small hydrophobic segments further stabilizes coacervates and increases viscosity through hydrophobic clustering.

View Article and Find Full Text PDF

Advancing the design and construction of artificial protocells with organized complexity, diverse functionality and practical applicability is urgently demanded in vitro synthetic biology and bioengineering but remains a grand challenge. Here, we present a versatile Pickering emulsion-based encapsulation approach to transform membraneless coacervate compartments into robust multicompartmental hybrid microreactors, which concurrently assimilate the expected attributes of hierarchically compartmentalized structure, molecularly crowded environment, selectively permeable ability and mechanically reinforced stability. Single or multiple biological and non-biological catalytic species can be spatially sequestered in specific domains of the hybrid microreactor, enabling spatiotemporal regulation of individual biocatalysis or divergent cascades with high reaction efficiency.

View Article and Find Full Text PDF

Spider silks are exceptional biomaterials: biocompatible, biodegradable, and with remarkable mechanical properties. Unfortunately, attempts to replicate them tend to fail due to the difficulty of synthesizing the proteins that constitute them, and to an incomplete understanding of their processing conditions. Here, we report a synthetic system inspired by spider silk, consisting of a synthetic polyelectrolyte with grafted oligoalanine chains.

View Article and Find Full Text PDF

This study explored the potential of chitosan (CH)/bacterial cellulose (BC) complexes (0.5% /) as novel emulsifiers to stabilize oil-in-water (o/w) Pickering emulsions (20% / sunflower oil), with a focus on their gel-like behavior. Emulsions were prepared using CH combined with BNC derived via HSO (BNC1) or HSO-HCl (BNC2) hydrolysis.

View Article and Find Full Text PDF