This study explored the potential of chitosan (CH)/bacterial cellulose (BC) complexes (0.5% /) as novel emulsifiers to stabilize oil-in-water (o/w) Pickering emulsions (20% / sunflower oil), with a focus on their gel-like behavior. Emulsions were prepared using CH combined with BNC derived via HSO (BNC1) or HSO-HCl (BNC2) hydrolysis.
View Article and Find Full Text PDFThis study presents a comprehensive evaluation of starch-based gel formulations enriched with proteins and hydrocolloids for extrusion-based 3D food printing (3DFP). Food inks were prepared using corn or potato starch, protein concentrates (fava, whey, rice, pea and soya), and hydrocolloids (κ-carrageenan, arabic gum, xanthan gum, and carboxy methylcellulose). Their rheological, mechanical, and textural properties were systematically analyzed to assess printability.
View Article and Find Full Text PDFCarbohydr Polym
April 2023
Pickering emulsions are increasingly preferred over typical surfactant-based emulsions due to several advantages, such as lower emulsifier usage, simplicity, biocompatibility, and safety. These types of emulsions are stabilized using solid particles, which produce a thick layer at the oil-water interface preventing droplets from aggregating. Starch nano-particles (SNPs) have received considerable attention as natural alternatives to synthetic stabilizers due to their unique properties.
View Article and Find Full Text PDFCorn starch-based hydrogels are safe and biodegradable polymers with a wide array of applications in food science. The aim of this study was to investigate the effects of starch and natural filler resistant starch type 2 (RS2) particles concentration on the textural properties of corn starch hydrogels. Native starch (NS) hydrogels of 8%, 10%, 12%, and 15% w/v were prepared; in each of these dispersions, part of the NS was substituted with RS2 to a concentration of 2% or 10%.
View Article and Find Full Text PDF