98%
921
2 minutes
20
Background: Although ALYREF has been demonstrated to have a role in a number of malignancies, its role in hepatocellular carcinoma (HCC) has received little attention. Our objective was to research at the prognostic value, biological role and relevance of ALYREF to the immune system in HCC.
Methods: The expression of ALYREF and its relationship with clinical parameters of HCC patients were analyzed by liver cancer cohort (LIHC) of The Cancer Genome Atlas. The expression and prognosis were verified by immunohistochemistry experiments. Gene transfection, CCK-8, scratch healing, transwell invasion and flow cytometry were used to assess the molecular function of ALYREF in vitro. The TIMER and TISIDB online data portals were used to assess the relevance of ALYREF to immunization. Stepwise regression analysis of ALYREF-related immune genes in the LIHC training set was used to construct a prognostic risk prediction model. Also, construct a nomogram to predict patient survival. The testing set for internal verification.
Results: Knockdown of ALYREF changed the biological phenotypes of HCC cells, such as proliferation, apoptosis, and invasion. In addition, the expression of ALYREF in HCC affected the level of immune cell infiltration and correlated with the overall survival time of patients. The constructed immune prognostic model allows for a valid assessment of patients.
Conclusion: ALYREF is increased in HCC, has an impact on cellular function and the immune system, and might be used as a prognostic marker.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9079359 | PMC |
http://dx.doi.org/10.1016/j.tranon.2022.101441 | DOI Listing |
Exp Cell Res
September 2025
The Department of Hematology, The First Affiliated Hospital of Hainan Medical University, No.31 Longhua Road, Haikou City, Hainan Province, 570000, P.R. China. Electronic address:
Background: Nasopharyngeal carcinoma (NPC) is a kind of tumor disease with high malignant degree. CREPT expression was elevated abnormally in multi-cancers. However, the role and regulatory mechanism of CREPT in NPC remains unknown.
View Article and Find Full Text PDFNAR Cancer
September 2025
Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden.
Epitranscriptomic modifications regulate gene expression and have been implicated in cancer, including breast cancer. Using the SCAN-B cohort, we analyzed 49 messenger RNA modification regulators (mRMPs) across breast cancer subtypes. In the basal subtype, we found significant overexpression of mA readers (IGF2BP1-3), mC regulators (NSUN5, ALYREF, YBX1, YBX2), pseudouridine [PUS1, MARS (or MetRS), RPUSD2], and RNA editing enzymes [APOBEC3A (A3A), A3G, ADAR1], all linked to poor survival.
View Article and Find Full Text PDFKaohsiung J Med Sci
September 2025
Department of Gynecology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
Ferroptosis resistance is a key player in cervical cancer (CC) development. Hypoxia is a negative factor affecting CC treatment by inducing ferroptosis resistance. Our study aimed to investigate the detailed mechanisms of hypoxia-induced ferroptosis resistance in CC cells.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, China.
The clinical utility of the anticancer agent doxorubicin (DOX) is limited by its dose-dependent cardiotoxicity. ALYREF, a nuclear protein that preserves genomic stability through interactions with intranuclear components or as an m⁵C-binding regulator of mRNA maturation and export, has not been previously implicated in DOX-induced cardiotoxicity (DIC). Here, the role and underlying mechanisms of ALYREF in the pathogenesis of DIC are investigated.
View Article and Find Full Text PDFCancer Metab
August 2025
Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Purpose: Cancer cells rely on serine biosynthesis for growth, but its regulation in colorectal cancer (CRC) remains not well understood. This study identifies the mC methyltransferase NSUN2 (NOP2/Sun domain family, member 2) as a key regulator of serine biosynthesis, revealing a novel mechanism driving CRC progression.
Methods: The expression and prognostic value of NSUN2 were evaluated using bioinformatics analyses and immunohistochemistry (IHC) assays.