98%
921
2 minutes
20
Nematode predation plays an essential role in determining changes in the rhizosphere microbiome. These changes affect the local nutrient balance and cycling of essential nutrients by selectively structuring interactions across functional taxa in the system. Currently, it is largely unknown to what extent nematode predation induces shifts in the microbiome associated with different rates of soil phosphorous (P) mineralization. Here, we performed an 7-year field experiment to investigate the importance of nematode predation influencing P availability and cycling. These were tracked via the changes in the alkaline phosphomonoesterase (ALP)-producing bacterial community and ALP activity in the rhizosphere of rapeseed. Here, we found that the nematode addition led to high predation pressure and thereby caused shifts in the abundance and composition of the ALP-producing bacterial community. Further analyses based on cooccurrence networks and metabolomics consistently showed that nematode addition induced competitive interactions between potentially keystone ALP-producing bacteria and other members within the community. Structural equation modeling revealed that the outcome of this competition induced by stronger predation pressure of nematodes was significantly associated with higher diversity of ALP-producing bacteria, thereby enhancing ALP activity and P availability. Taken together, our results provide evidence for the importance of predator-prey and competitive interactions in soil biology and their direct influences on nutrient cycling dynamics. Nematode predation plays an essential role in determining the rhizosphere microbiome. In doing so, predation dynamically affects the soil nutrient cycling, for instance, by shifting the availability of phosphorus (P) for plant uptake. However, the role of nematode predation inducing selective changes in the microbiome and affecting rates of P mineralization remains still largely unknown. Here, we used a field site treated with different fertilizers to investigate the importance of nematode predation influencing P availability and plant productivity, via changes in bacterial taxa producing alkaline phosphomonoesterases (ALP) and ALP activity in the rhizosphere of rapeseed. We integrated field and laboratory experiments to show that nematode predation induces bacterial keystone taxa to compete with the connected members and results in the modulation of ALP-producing bacterial populations and ALP activity in the rhizosphere. Taken together, our study provides novel insights into microbially mediated mechanisms of competitive interaction induced by nematode predation in enhancing P availability in the plant rhizosphere.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239175 | PMC |
http://dx.doi.org/10.1128/mbio.03293-21 | DOI Listing |
Vet Res Commun
September 2025
Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic.
Tenrecs (Afrosoricida: Tenrecidae) are insectivorous mammals endemic to Madagascar, currently facing population declines due to habitat loss and subsistence hunting. Emerging infectious diseases, including parasitic infections, may pose additional threats. A comparable situation has been observed in Algerian hedgehogs (Atelerix algirus) in Mallorca, where the invasive nematode Angiostrongylus cantonensis has been associated with severe neuropathology.
View Article and Find Full Text PDFZoolog Sci
August 2025
Biotechnology Institute of Guizhou Province, Guiyang, Guizhou, China,
Rhabdocoel flatworms of the family Typhloplanidae are predominantly found in freshwater and limnoterrestrial environments, with only a few species inhabiting marine and brackish water ecosystems. In this study, a flatworm was discovered in moist soil containing nematodes in the Guizhou plateau of southwest China for the first time. A new species, Zuo, gen.
View Article and Find Full Text PDFJ Nematol
February 2025
School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan.
Viviparity is a very rare reproductive mode in nematodes, having been documented in only six species. Five of these species have been isolated among the dung beetles , suggesting that studying the environments associated with dung beetles may help shed light on why viviparity evolved in these particular species. is often closely associated with the viviparous nematode , as well as some other oviparous nematodes.
View Article and Find Full Text PDFVirulence
December 2025
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming, China.
Vacuoles are essential organelles in eukaryotic cells, playing key roles in cellular homeostasis through nutrient sensing, osmoregulation, and autophagy. In filamentous fungi, vacuole dynamics are crucial for mycelial growth, stress response, and pathogenicity. The vacuolar functions and their regulation in nematode-trapping (NT) fungi remain poorly understood.
View Article and Find Full Text PDFJ Econ Entomol
August 2025
Planta Piloto de Procesos Industriales Microbiológicos y Biotecnología (PROIMI-CONICET), Departamento de Control Biológico, San Miguel de Tucumán, Tucumán, Argentina.
Drosophila suzukii Matsumura (Diptera: Drosophilidae), or spotted wing drosophila is one of the most relevant threats to global fruit production and trade. In South America, D. suzukii was detected and established in Brazil in 2013, Uruguay and Argentina in 2014, and Chile in 2017.
View Article and Find Full Text PDF