B, N stabilization effect on multicavity carbon microspheres for boosting durable and fast potassium-ion storage.

J Colloid Interface Sci

State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, PR China. Electronic address:

Published: August 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Heteroatom-rich carbon materials deliver superior potassium storage capacity owing to the abundant active sites, but their stability and conductivity are damaged because of the numerous defects and distortion of π-conjugated system. In this work, we amended the adverse influences of heteroatoms on carbon materials through the B, N stabilization effect. Due to an amending effect of B atoms on the N-doped carbon matrix, the integrity of the carbon skeleton and stability of the system are significantly enhanced, and the undesirable defects are transformed into favorable active sites, resulting in the simultaneous improvement of K storage capacity, rate performance and cyclic stability. The stabilized materials have a highly reversible carbon structure and fast K transfer kinetics, leading to high reversible capacity (300 mA h g at 0.1 A g), good rate performance (107.2 mA h g at 10 A g) and superior cyclic stability (75.3 % capacity retention from cycle 11 to 2000 at 1 A g). Consequently, the constructed devices perform excellent energy densities of 158.8 and 40.7 Wh kg under power densities of 100 and 11250 W kg, respectively. This work proposes an effective strategy for significantly improving heteroatom-rich carbon materials, which broadens its application fields in high-performance potassium ion storage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.03.110DOI Listing

Publication Analysis

Top Keywords

carbon materials
12
heteroatom-rich carbon
8
storage capacity
8
active sites
8
rate performance
8
cyclic stability
8
carbon
7
stabilization multicavity
4
multicavity carbon
4
carbon microspheres
4

Similar Publications

Recent advances in presodiation strategies for hard carbon anodes in sodium-ion batteries.

Chem Commun (Camb)

September 2025

Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China.

Hard carbon (HC) has emerged as a promising anode material for sodium-ion batteries (SIBs) owing to its low cost, abundant renewable resources, and high specific capacity. However, its practical application is significantly hindered by the severe initial irreversible capacity loss resulting from sodium consumption during the first cycle. To address this issue, a variety of presodiation strategies have been developed to compensate for the sodium loss and improve the initial coulombic efficiency.

View Article and Find Full Text PDF

High-entropy spinel (FeCoNiMnCr)O nanoparticles supported on carbon nanotubes for enhanced electrochemical seawater oxidation.

Chem Commun (Camb)

September 2025

Key Laboratory of Special Functional Materials for Ecological Environment and Information (Ministry of Education), School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China.

High-performance, low-cost electrocatalysts are essential for freshwater-independent seawater electrolysis. We design a SWCNT-supported (FeCoNiMnCr)O high-entropy spinel oxide by a hydrothermal method and air-firing, where the conductive network enhances charge transfer and active site exposure. The catalyst achieves 282 mV@10 mA cm with 100 h stability in alkaline seawater.

View Article and Find Full Text PDF

Optimal cerium microalloying enhances SASS/Q235 weld corrosion and antibacterial performance.

iScience

September 2025

State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.

Super austenitic stainless steels (SASS) face challenges like galvanic corrosion and antibacterial performance when welded to carbon steel (Q235) in marine environments. This study demonstrates that adding 1.0 wt% cerium (Ce) to SASS refines the heat-affected zone (HAZ) grain structure (from 7 μm to 2 μm), suppresses detrimental σ-phase precipitation, and forms a dense oxide film.

View Article and Find Full Text PDF

Carbon fiber nanotip electrodes (CFNEs) are crucial for electrochemical recordings of neurotransmission release in confined spaces, such as synapses and intracellular measurements. However, fabricating CFNEs with small surface area to minimize noise remains challenging due to inconsistent tip size control, low reproducibility, and low fabrication success rate. Here, we present a reliable, user-friendly method with high reproducibility and success rate for precise CFNE fabrication using microscopy-guided electrochemical etching of cylindrical carbon fiber microelectrodes in a potassium hydroxide droplet.

View Article and Find Full Text PDF

The study of electrochemical oxidations has wide-ranging implications, from the development of new electrocatalysts for fuel cells for energy conversion, to the synthesis of fine chemicals. 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) has been used for decades as a sustainable, metal-free mediator for chemical oxidations and is now being used for electrochemical oxidations. We describe here a novel approach to TEMPO-mediated electrooxidations, in which the chemical input and waste generated during electrooxidations of alcohols are minimized by using a multifunctional room temperature ionic liquid (RTIL) to facilitate flow electrosynthesis.

View Article and Find Full Text PDF