Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The barley cellulose synthase-like F (CslF) genes encode putative cell wall polysaccharide synthases. They are related to the cellulose synthase (CesA) genes involved in cellulose biosynthesis, and the CslD genes that influence root hair development. Although CslD genes are implicated in callose, mannan and cellulose biosynthesis, and are found in both monocots and eudicots, CslF genes are specific to the Poaceae. Recently the barley CslF3 (HvCslF3) gene was shown to be involved in the synthesis of a novel (1,4)-β-linked glucoxylan, but it remains unclear whether this gene contributes to plant growth and development. Here, expression profiling using qRT-PCR and mRNA in situ hybridization revealed that HvCslF3 accumulates in the root elongation zone. Silencing HvCslF3 by RNAi was accompanied by slower root growth, linked with a shorter elongation zone and a significant reduction in root system size. Polymer profiling of the RNAi lines revealed a significant reduction in (1,4)-β-linked glucoxylan levels. Remarkably, the heterologous expression of HvCslF3 in wild-type (Col-0) and root hair-deficient Arabidopsis mutants (csld3 and csld5) complemented the csld5 mutant phenotype, in addition to altering epidermal cell fate. Our results reveal a key role for HvCslF3 during barley root development and suggest that members of the CslD and CslF gene families have similar functions during root growth regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324092PMC
http://dx.doi.org/10.1111/tpj.15764DOI Listing

Publication Analysis

Top Keywords

root growth
12
cell wall
8
wall polysaccharide
8
root
8
cslf genes
8
cellulose biosynthesis
8
csld genes
8
14-β-linked glucoxylan
8
elongation zone
8
cellulose
5

Similar Publications

Background: Clubroot, caused by Plasmodiophora brassicae, significantly impacts cruciferous crop production worldwide. Biocontrol is an environmentally friendly and promising approach for clubroot management. Endophytic bacteria are known for their ability to promote plant growth and induce resistance against plant diseases.

View Article and Find Full Text PDF

EXPRESS: Exacerbation of paclitaxel-induced neuropathic pain behaviors in breast tumor-bearing mice.

Mol Pain

September 2025

The Department of Pain Medicine, Division of Anesthesiology, Critical Care & Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

Background: Chronic pain and cancer interact bidirectionally, with pain enhancing sensory peptides and potentially promoting tumor growth. Despite this, most chemotherapy-induced neuropathic pain (CIPN) studies overlook the contribution of cancer itself to neuropathy, focusing instead on chemotherapy-induced mechanisms. Animal models of chemotherapy-induced neuropathic pain (CINP) have been developed by injecting chemotherapeutic drugs such as paclitaxel into normal animals without cancer.

View Article and Find Full Text PDF

GreenCells: A comprehensive resource for single-cell analysis of plant lncRNAs.

J Biol Chem

September 2025

School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Yunnan Key Laboratory of Crop Wild Relatives Omics, Xishuangbanna Tropical Botanical Garden, Chines

Long non-coding RNAs (lncRNAs) play crucial roles in plant growth, development, and stress responses. With the advancement of single-cell RNA sequencing (scRNA-seq) technology, it is now possible to investigate lncRNA expression and function at single-cell resolution. Although several plant single-cell transcriptome databases have been established, they predominantly focus on protein-coding genes while largely overlooking lncRNAs.

View Article and Find Full Text PDF

Exploring the synergy of CO nanobubbles and biochar as a hydroponic substrate for enhanced carbon and nutrient utilization with a comprehensive health risk assessment.

J Environ Manage

September 2025

Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chuo-Shan Rd., Taipei, 10673, Taiwan; Water Innovation, Low Carbon and Environmental Sustainability Research Center, National Taiwan University, Taipei, 10617, Taiwan; Science and Technology Research Institute for DE-Car

In this study, a deep-water culture (DWC) hydroponic system integrating carbon dioxide nanobubble (CNB) water and biochar (BC) was explored as a potential substrate for carbon and nutrient management. Lettuce seedlings were cultivated under varying substrates, including tap water (TW) and deionized water (DW) with and without CNB and BC at concentrations of 0.1 or 0.

View Article and Find Full Text PDF

An improving spectral PTF for mining area soil water content prediction: combining 2D correlation spectroscopy and soil-crop indicators with ResGRU.

Spectrochim Acta A Mol Biomol Spectrosc

August 2025

State Key Laboratory for Safe Mining of Deep Coal Resources and Environment Protection, Anhui University of Science and Technology, Huainan 232001, China; School of Spatial Informatics and Geomatics Engineering, Anhui University of Science and Technology, Huainan 232001, China. Electronic address: c

Conventional methods for soil sampling and soil water content (SWC) measurement are often labor-intensive and time-consuming. The Pedo-transfer function (PTF) integrating soil spectroscopy with soil physicochemical properties provides a more efficient approach for SWC estimation. However, existing studies highlight regional limitations in the accuracy of PTFs across diverse geographical regions.

View Article and Find Full Text PDF