Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nanobubbles have the potential to curtail the loss of oxygen during activated sludge aeration due to their extensive surface areas and lack of buoyance in solution. In this study, nanobubble aeration was explored as a novel approach to enhance aerobic activated sludge treatment and benchmarked against coarse bubble aeration at the lab scale. Nanobubble aerated activated sludge reactors achieved greater dissolved oxygen levels at faster rates. Higher soluble chemical oxygen demand removal by 10% was observed when compared to coarse bubble aeration with the same amount of air. The activated sludge produced compact sludge yielding easier waste sludge for subsequent sludge handling. The samples showed fewer filamentous bacteria with a lower relative abundance of floc forming Corynebacterium, Pseudomonas, and Zoogloea in the sludge. The microbiome of the nanobubble-treated activated sludge showed significant shifts in the abundance of community members at the genus level and significantly lower alpha and beta diversities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2022.127090DOI Listing

Publication Analysis

Top Keywords

activated sludge
24
sludge
10
sludge reactors
8
coarse bubble
8
bubble aeration
8
activated
6
oxygen
5
air nanobubbles
4
nanobubbles oxygen
4
oxygen transfer
4

Similar Publications

Treatment of non-sterile biogas slurry from a pig farm using microalgae isolated from the activated sludge of sewage plants.

Microbiol Spectr

September 2025

Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China.

Unlabelled: Microalgae treatment is regarded as a green and environmentally acceptable method of treating pig farm biogas slurry (BS). Numerous studies have been conducted on the use of microalgae to treat sterilized BS. Nevertheless, in large-scale application settings, this method will undoubtedly result in high costs and low efficiency.

View Article and Find Full Text PDF

Activation of peroxymonosulfate by Fenton-conditioned sludge-derived biochar for efficient degradation and detoxification of sulfamethoxazole: Reactive oxygen species dominated process.

Environ Res

September 2025

School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China. Electronic address: ho

The activation of peroxymonosulfate (PMS) by biochar has shown promising potential for the efficient degradation and detoxification of antibiotics in wastewater. However, the underlying mechanisms are not fully understood. In this study, Fenton-conditioned sludge-derived biochar (FSBC) was prepared by microwave pyrolysis to activate PMS for the efficient degradation and detoxification of sulfamethoxazole (SMX).

View Article and Find Full Text PDF

Characterization and Antimicrobial Efficacy of a Bacteriophage Targeting Multidrug-Resistant .

ACS Infect Dis

September 2025

Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China.

The emergence of multidrug-resistant (MDR) poses a significant threat to global public health, necessitating alternative therapeutic strategies. In this study, we isolated and characterized a novel lytic bacteriophage (phage), vB_EcoM_51, from poultry farm sewage and evaluated its potential against MDR . Transmission electron microscopy revealed that the phage exhibits morphological features typical of the family, including a polyhedral head (∼66.

View Article and Find Full Text PDF

Microalgae-bacteria symbiosis system is significant for sustainable and low-carbon wastewater treatment, with self-aggregation being key to its stable operation and effective pollutant removal. Cellular motility is the main driving force behind self-aggregation, crucial for symbiosis stability, but the characteristics and patterns involved still remain largely unexplored. Here, cellular movement dynamics into the microalgae-activated sludge model (ASM3) is incorporated, enabling synchronized simulation of metabolic activities and movement behaviors through physical and biochemical interactions in bioreactor systems.

View Article and Find Full Text PDF

Concentration-specific effects of micropollutants on microbial communities and antibiotic resistance genes in activated sludge systems.

J Hazard Mater

August 2025

State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China. Electronic address:

Micropollutants are widespread in wastewater systems and can impact microbial communities and the transfer of antibiotic resistance genes (ARGs). Nevertheless, the specific concentration thresholds for these effects under environmental conditions remain largely unknown. This study evaluated six micropollutants at five environmentally relevant concentrations (0.

View Article and Find Full Text PDF