Strong reduction of thermal conductivity of WSewith introduction of atomic defects.

Nanotechnology

Institute of Applied Physics and Materials Engineering, University of Macau, Macau, People's Republic of China.

Published: April 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The thermal conductivities of pristine and defective single-layer tungsten diselenide (WSe) are investigated by using equilibrium molecular dynamics method. The thermal conductivity of WSeincreases dramatically with size below a characteristic of ~5 nm and levels off for broader samples and reaches a constant value of ~2 W/mK. By introducing atomic vacancies, we discovered that the thermal conductivity of WSeis significantly reduced. In particular, the W vacancy has a greater impact on thermal conductivity reduction than Se vacancies: the thermal conductivity of pristine WSeis reduced by ~60% and ~70% with the adding of ~1% of Se and W vacancies, respectively. The reduction of thermal conductivity is found to be related to the decrease of mean free path (MFP) of phonons in the defective WSe. The MFP of WSedecreases from ~4.2 nm for perfect WSeto ~2.2 nm with the addition of 0.9% Se vacancies. More sophisticated types of point defects, such as vacancy clusters and anti-site defects, are explored in addition to single vacancies and are found to dramatically renormalize the phonons. The reconstruction of the bonds leads to localized phonons in the forbidden gap in the phonon density of states which leads to a drop in thermal conduction. This work demonstrates the influence of different defects on the thermal conductivity of single-layer WSe, providing insight into the process of defect-induced phonon transport as well as ways to improve heat dissipation in WSe-based electronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ac622dDOI Listing

Publication Analysis

Top Keywords

thermal conductivity
28
thermal
9
reduction thermal
8
defects thermal
8
wseis reduced
8
conductivity
7
vacancies
5
strong reduction
4
conductivity wsewith
4
wsewith introduction
4

Similar Publications

High-entropy metal phosphide nanoparticles for accelerated lithium polysulfide conversion.

Chem Sci

September 2025

School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University Nanning 530004 P. R. China

To overcome the persistent challenges of sluggish lithium polysulfide (LiPS) conversion kinetics and the shuttle effect in Li-S batteries, this work introduces a novel, cost-effective thermal treatment strategy for synthesizing high-entropy metal phosphide catalysts using cation-bonded phosphate resins. For the first time, we successfully fabricated single-phase high-entropy FeCoNiCuMnP nanoparticles anchored on a porous carbon network (HEP/C). HEP/C demonstrates enhanced electronic conductivity and superior LiPS adsorption capability, substantially accelerating its redox kinetics.

View Article and Find Full Text PDF

Background: In catheter-based radiofrequency ablation (RFA), energy is delivered to heterogeneous thin-walled tissues to induce therapeutic heating. Variations in electrical and mechanical properties of tissue contents have a great effect on outcomes.

Purpose: The objective of this study is to develop models that replicate tissue heterogeneity and visualize ablation zones for effective evaluation and optimization.

View Article and Find Full Text PDF

Thickness-Dependent Low Lattice Thermal Conductivity of Chemical Vapor-Deposited SnSe Nanosheets.

ACS Nano

September 2025

State Key Lab of New Ceramic Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.

SnSe is a layered semiconductor with intrinsically low thermal conductivity, making it a promising candidate for thermoelectric and thermal management applications. However, detailed measurements of the intrinsic thermal conductivity of SnSe nanosheets grown by chemical vapor deposition (CVD) remain scarce. Here, monocrystalline SnSe nanosheets were synthesized by CVD, with systematic investigation of thickness-dependent in-plane thermal conductivity.

View Article and Find Full Text PDF

Li/CF primary batteries are renowned for their exceptional energy density, yet their practical deployment is hindered by the inherently sluggish kinetics of the CF cathode. This study addresses this limitation by incorporating selenium (Se) into CF (denoted as CF/Se) via a facile low-temperature thermal treatment, significantly enhancing its electrochemical performance. Comprehensive spectroscopic and electrochemical analyses reveal that Se doping induces the formation of CSe bonds, which promote semi-ionic CF bonding, thereby accelerating Li diffusion and reducing charge transfer resistance.

View Article and Find Full Text PDF

The processes of thermoforming 2D-printed electronics into 3D structures can introduce defects that impact the electrical performance of conductors, making them more susceptible to thermal failure during high electrical power/current applications on temperature-sensitive substrates. We therefore report the use of a thin-film boron nitride nanotube (BNNT) interlayer to directly reduce heat stress on linear and serpentine metallic traces on polycarbonate substrates thermoformed to 3D spherocylindrical geometries at varying elongation percentages. We demonstrate that the BNNT interlayer helps to improve the electrical conductivity of highly elongated thermoformed 3D traces in comparison to traces on bare polycarbonate.

View Article and Find Full Text PDF