98%
921
2 minutes
20
Li/CF primary batteries are renowned for their exceptional energy density, yet their practical deployment is hindered by the inherently sluggish kinetics of the CF cathode. This study addresses this limitation by incorporating selenium (Se) into CF (denoted as CF/Se) via a facile low-temperature thermal treatment, significantly enhancing its electrochemical performance. Comprehensive spectroscopic and electrochemical analyses reveal that Se doping induces the formation of CSe bonds, which promote semi-ionic CF bonding, thereby accelerating Li diffusion and reducing charge transfer resistance. Density functional theory calculations further demonstrate that Se doping modulates the electronic structure of CF, narrowing its bandgap to establish an efficient conductive network and markedly improving electronic conductivity. The optimized CF/Se-1 composite (Se:CF = 1:9) delivers outstanding performance, achieving a discharge capacity of 383.9 mAh g at a high current density of 20 A g with an energy density of 765.7 Wh kg and a power density of 3.99 × 10 W kg. Moreover, CF/Se-1 exhibits remarkable wide-temperature operability (-35 to 60 °C), retaining a capacity of 485.3 mAh g at 0.5 A g with a stable 2.0 V plateau even at -35 °C. This work underscores the pivotal role of Se doping in tailoring the band structure of CF, unlocking its potential for high-power and extreme-temperature Li/CF batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2025.138891 | DOI Listing |
Spinal Cord Ser Cases
September 2025
Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
Study Design: Concurrent mixed methods case series.
Objectives: To examine the feasibility and effect of a peer-facilitated, remote handcycling sport program on physical, psychological, and social health of individuals with spinal cord injury or disease (SCI/D) aged ≥50 years.
Setting: Participants' homes.
ACS Appl Mater Interfaces
September 2025
National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
In this study, we analyze InO thin-film transistors (InO-TFT) using synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES) in conditions. A bottom-gate InO-TFT with a high- AlO gate dielectric, grown on thermally oxidized silicon (SiO/p-Si), was examined while operating at varying and . The results reveal that the In 3d core level binding energy varies along the horizontal channel length, driven by the potential gradient induced by .
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. Electronic address:
Lignin, a negatively charged, three-dimensional natural biopolymer, serves as an ideal support for metal catalysts due to its abundant functional groups and tunable chemical properties, which enable strong metal coordination and effective immobilization. Herein, we demonstrate a lignin-mediated Co/O co-doped AgS, symbolized as L-AgCoOS, bimetal oxysulfide catalyst via a facile hydrolysis method for the efficient reduction of toxic phenolic compounds (4-nitrophenol, 4-NP), organic dyes (methyl orange (MO), methylene blue (MB), rhodamine B (RhB), and heavy metal ions Cr(VI)) under dark conditions. Lignin, used to immobilize catalysts, also contributes to increasing the number of active catalytic sites and enhancing catalytic activity.
View Article and Find Full Text PDFJ Neural Eng
September 2025
Eindhoven University of Technology, De Rondom 70, Eindhoven, 5612 AP, NETHERLANDS.
Transcranial temporal interference stimulation (tTIS) has recently emerged as a non-invasive neuromodulation method aimed at reaching deeper brain regions than conventional techniques. However, many questions about its effects remain, requiring further experimental studies. This review consolidates the experimental literature on tTIS's effects in the human brain, clarifies existing evidence, identifies knowledge gaps, and proposes future research directions to evaluate its potential.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
WPI, International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan; Mitsui Chemicals, Inc -.Carbon Neutral Research Center (MCI-CNRC), Kyushu University, Fukuoka 819-0395, Japan. Electronic address:
This study explores highly active nitride-based g-CN/CuO photocatalysts for CO photoconversion by synthesizing them through high-pressure torsion (HPT) straining. Data indicate that increasing the applied strain under high pressure promotes vacancy formation and improves the electronic interaction at the g-CN/CuO interphases, enabling superior charge separation and extended light absorption. The generation of dual vacancies of oxygen and nitrogen is verified by electron paramagnetic resonance and Fourier transform infrared spectroscopic methods, and the generation of a type-II heterojunction is confirmed by band structure analysis.
View Article and Find Full Text PDF