Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chimeric antigen receptor (CAR) T cells have demonstrated promising efficacy, particularly in hematologic malignancies. One challenge regarding CAR T cells in solid tumors is the immunosuppressive tumor microenvironment (TME), characterized by high levels of multiple inhibitory factors, including transforming growth factor (TGF)-β. We report results from an in-human phase 1 trial of castration-resistant, prostate cancer-directed CAR T cells armored with a dominant-negative TGF-β receptor (NCT03089203). Primary endpoints were safety and feasibility, while secondary objectives included assessment of CAR T cell distribution, bioactivity and disease response. All prespecified endpoints were met. Eighteen patients enrolled, and 13 subjects received therapy across four dose levels. Five of the 13 patients developed grade ≥2 cytokine release syndrome (CRS), including one patient who experienced a marked clonal CAR T cell expansion, >98% reduction in prostate-specific antigen (PSA) and death following grade 4 CRS with concurrent sepsis. Acute increases in inflammatory cytokines correlated with manageable high-grade CRS events. Three additional patients achieved a PSA reduction of ≥30%, with CAR T cell failure accompanied by upregulation of multiple TME-localized inhibitory molecules following adoptive cell transfer. CAR T cell kinetics revealed expansion in blood and tumor trafficking. Thus, clinical application of TGF-β-resistant CAR T cells is feasible and generally safe. Future studies should use superior multipronged approaches against the TME to improve outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10308799PMC
http://dx.doi.org/10.1038/s41591-022-01726-1DOI Listing

Publication Analysis

Top Keywords

car t cells
20
car t cell
16
car
9
castration-resistant prostate
8
t cells
5
psma-targeting tgfβ-insensitive
4
tgfβ-insensitive armored
4
armored car
4
t cells metastatic
4
metastatic castration-resistant
4

Similar Publications

Objective: To develop a novel prognostic scoring system for severe cytokine release syndrome (CRS) in patients with B-cell acute lymphoblastic leukemia (B-ALL) treated with anti-CD19 chimeric antigen receptor (CAR)-T-cell therapy, aiming to optimize risk mitigation strategies and improve clinical management.

Methods: This single-center retrospective cohort study included 125 B-ALL patients who received anti-CD19 CAR-T-cell therapy from January 2017 to October 2023. These cases were selected from a cohort of over 500 treated patients on the basis of the availability of comprehensive baseline data, documented CRS grading, and at least 3 months of follow-up.

View Article and Find Full Text PDF

An international prognostic index to predict the early chemoimmunotherapy failure of diffuse large B-cell lymphoma.

Ann Hematol

September 2025

Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

 Approximately 30-40% of diffuse large B-cell lymphoma (DLBCL) patients will develop relapse/refractory disease, who may benefit from novel therapies, such as CAR-T cell therapy. Thus, accurate identification of individuals at high risk of early chemoimmunotherapy failure (ECF) is crucial. Methods.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) therapies have demonstrated remarkable clinical efficacy in hematological malignancies, validating their therapeutic potential. However, challenges such as therapeutic resistance and limited accessibility hinder their broader application. To overcome these limitations, alternative CAR-based cell therapies, including CAR-Natural Killer (CAR-NK), CAR-macrophage (CAR-M), and CAR-dendritic cell (CAR-DC) therapies, have been proposed.

View Article and Find Full Text PDF

Overcoming barriers to referral for CAR T-cell therapy in patients with non-Hodgkin aggressive B-cell lymphomas: A Delphi consensus.

Cytotherapy

July 2025

IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy; Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy. Electronic address:

Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment of aggressive B-cell non-Hodgkin lymphoma, particularly in relapsed/refractory large B-cell lymphoma and mantle cell lymphoma. Despite its transformative potential, significant challenges persist in optimizing patient identification and referral pathways to ensure timely and equitable access. This expert consensus, developed through the Delphi methodology, analyzes key barriers to the referral process and proposes structured solutions to enhance collaboration between referring treatment centers (RTCs) and qualified treatment centers (QTCs).

View Article and Find Full Text PDF

B-cell maturation antigen (BCMA)-directed chimeric antigen receptor (CAR) T-cell therapies have revolutionized the approach and management of relapsed/refractory multiple myeloma (RRMM), and as of 2025, idecabtagene vicleucel (ide-cel) and ciltacabtagene autoleucel (cilta-cel) are the only BCMA-targeted CAR T-cell therapies approved by the FDA. Exceptional responses were demonstrated for heavily pretreated patients in the KarMMa-1 trial, reporting a 73% overall response rate (ORR) and 98% in the CARTITUDE-1 trial. Furthermore, both therapies show a significant improvement in progression-free survival (PFS) compared to standard regimens when administered in earlier lines.

View Article and Find Full Text PDF