Neuropeptide S and its receptor NPSR enhance the susceptibility of hosts to pseudorabies virus infection.

Res Vet Sci

Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Science (College of Bee Science), Fujian Agricultural and Forestry University, Fujian, PR China. Electronic address:

Published: September 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The neuropeptide S (NPS) and its receptor (NPSR) represent a signaling system in the brain. Increased levels of NPS and NPSR have been observed in PK15 cells and murine brains in response to pseudorabies virus (PRV) infection, but it remains unclear whether elevated levels of NPS and NPSR are involved in the pathogenic process of PRV infection. In this study, the activities of both NPS and NPSR during PRV pathogenesis were explored in vitro and in vivo by reverse transcription polymerase chain reaction (RT-PCR), PCR, real-time quantitative RT-PCR (qRT-PCR), qPCR, TCID, and Western blotting methods. NPSR-deficient cells were less susceptible to PRV infection, as evidenced by decreased viral production and PRV-glycoprotein E (gE) expression. In vitro studies showed that exogenous NPS promoted the expression of interleukin 6 (IL-6) mRNA but inhibited interferon β (IFN-β) mRNA expression in PK15 cells after PRV infection. In vivo studies showed that NPS-treated mice were highly susceptible to PRV infection, with decreased survival rates and body weights. In addition, NPS-treated mice showed elevated levels of IL-6 mRNA and STAT3 phosphorylation. However, the expression of IFN-β mRNA was greatly decreased after virus challenge. Contrasting results were obtained from the NPSR-ir-treated groups, which further highlighted the effects of NPS. This study revealed that NPS-treated hosts are more susceptible to PRV infection than controls. Moreover, excessive IL-6/STAT3 and defective IFN-β responses in NPS-treated mice may contribute to the pathogenesis of PRV.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rvsc.2022.03.008DOI Listing

Publication Analysis

Top Keywords

prv infection
24
nps npsr
12
susceptible prv
12
nps-treated mice
12
receptor npsr
8
pseudorabies virus
8
levels nps
8
pk15 cells
8
prv
8
elevated levels
8

Similar Publications

eIF4A3 inhibits pseudorabies virus replication by facilitating antiviral immune response.

Vet Microbiol

September 2025

International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zheng

Eukaryotic translation initiation factor 4A3 (eIF4A3)-mediated RNA metabolism is essential for cellular homeostasis and viral replication. However, its role in regulating antiviral innate immunity during pseudorabies virus (PRV) infection remains unknown. Here, we demonstrate that eIF4A3 protein expression was significantly downregulated both in vitro and in vivo during PRV infection.

View Article and Find Full Text PDF

Pseudorabies virus induces ferroptosis by disrupting iron homeostasis through activation of TfR1 and ferritinophagy.

J Virol

September 2025

Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.

Programmed cell death (PCD) refers to a regulated cellular process involving a cascade of biochemical reactions and molecular mechanisms, commonly including apoptosis, necroptosis, and pyroptosis. Ferroptosis is a recently identified form of PCD distinguished by its dependence on iron. Emerging evidence underscores the significance of ferroptosis in viral infections; however, its role in Pseudorabies virus (PRV) infection, an enveloped double-stranded DNA virus belonging to the Alphaherpesvirinae subfamily, remains poorly understood.

View Article and Find Full Text PDF

The mechanism of action of micafungin against pteropine orthoreovirus infection in the human A549 cell line.

Arch Virol

August 2025

Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan.

Pteropine orthoreovirus (PRV) is a fusogenic virus carried by bats that causes respiratory illnesses in humans. Micafungin (MCFG), an approved drug for treatment of fungal infections, has been shown to inhibit the propagation of PRV, but its precise mechanism of action remains unclear. In this study, we investigated the molecular mechanism of action of MCFG against PRV propagation.

View Article and Find Full Text PDF

Pseudorabies virus (PRV) causes an acute febrile infectious disease of pigs. Since 2011, PRV variants have appeared and spread nationwide in China. mRNA vaccines present a safe alternative and can stimulate humoral and cellular immunity.

View Article and Find Full Text PDF

Porcine lymphotropic herpesviruses -1, -2, and -3 (PLHV-1, PLHV-2, and PLHV-3) are gammaherpesviruses that are widespread in pigs. These viruses are closely related to the human pathogens Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV), both of which are known to cause severe diseases in humans. To date, however, no definitive association has been established between PLHVs and any disease in pigs.

View Article and Find Full Text PDF