Pseudorabies virus induces ferroptosis by disrupting iron homeostasis through activation of TfR1 and ferritinophagy.

J Virol

Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Programmed cell death (PCD) refers to a regulated cellular process involving a cascade of biochemical reactions and molecular mechanisms, commonly including apoptosis, necroptosis, and pyroptosis. Ferroptosis is a recently identified form of PCD distinguished by its dependence on iron. Emerging evidence underscores the significance of ferroptosis in viral infections; however, its role in Pseudorabies virus (PRV) infection, an enveloped double-stranded DNA virus belonging to the Alphaherpesvirinae subfamily, remains poorly understood. Here, we demonstrate that PRV infection induces multiple forms of PCD, including ferroptosis, which is characterized by mitochondrial shrinkage, lipid peroxidation, ferrous iron (Fe²) accumulation, and elevated levels of reactive oxygen species (ROS). Ferroptosis facilitates PRV replication, with iron overload playing a crucial role. Mechanistically, we show that transferrin receptor 1 (TfR1) and ferritinophagy are involved in PRV-induced iron overload. Specifically, PRV infection upregulates TfR1 expression via hypoxia-inducible factor-1β (HIF-1β) and promotes its translocation to the cell membrane through Rab11a, thereby enhancing the cellular import of extracellular ferric iron (Fe³). In parallel, PRV activates ferritinophagy to degrade ferritin heavy chain 1 (FTH1) via selective autophagy receptors, nuclear receptor coactivator 4 (NCOA4) and Tax1-binding protein 1 (TAX1BP1), further contributing to intracellular iron accumulation. Altogether, these findings demonstrate that PRV induces ferroptosis by disrupting iron homeostasis through TfR1 activation and ferritinophagy induction, providing novel insights into the pathogenesis of PRV and other herpesviruses.IMPORTANCEFerroptosis is an iron-dependent form of non-apoptotic cell death that primarily involves iron overload, lipid peroxidation, and suppression of antioxidant systems. Increasing evidence indicates that ferroptosis plays an important role in viral infections. In this study, we show that PRV induces ferroptosis by disrupting iron homeostasis through TfR1 activation and ferritinophagy induction. On one hand, PRV infection upregulates TfR1 expression through HIF-1β and facilitates TfR1 translocation to the cell membrane via Rab11a, leading to enhanced import of extracellular Fe into cells. On the other hand, PRV exploits the selective autophagy receptors NCOA4 and TAX1BP1, which strengthens the interaction between NCOA4, TAX1BP1, and FTH1, triggering ferritinophagy and increasing intracellular Fe levels. Collectively, these findings enrich the understanding of the mechanism by which PRV induces ferroptosis, shedding new light on PRV and other alpha-herpesvirus infections.

Download full-text PDF

Source
http://dx.doi.org/10.1128/jvi.00974-25DOI Listing

Publication Analysis

Top Keywords

induces ferroptosis
16
prv infection
16
ferroptosis disrupting
12
disrupting iron
12
iron homeostasis
12
prv
12
iron overload
12
prv induces
12
iron
10
ferroptosis
9

Similar Publications

Oncogenic role of the SLC7A13-SLC3A1 cystine transporter in human luminal breast cancer and its cryo-EM structure.

Protein Cell

September 2025

Department of Human Cell Biology and Genetics, SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.

Breast cancer is a prevalent malignancy worldwide. The majority of breast cancers belong to the estrogen receptor (ER)-positive luminal subtype that can be effectively treated with antiestrogen therapies. However, a significant portion of such malignancies become hormone-refractory and incurable.

View Article and Find Full Text PDF

[Inhibition of ferroptosis alleviates acute kidney injury caused by diquat in zebrafish].

Nan Fang Yi Ke Da Xue Xue Bao

August 2025

Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou 510620, China.

Objectives: To investigate the role of ferroptosis in diquat-induced acute kidney injury (AKI) and its molecular mechanisms.

Methods: Transgenic zebrafish models with Tg (Eco.Tshb:EGFP) labeling of the renal tubules and Tg (lyz:dsRed2) labeling of the neutrophils were both divided into control group, gentamicin (positive control) group, diquat poisoning group, ferroptosis inhibitor group.

View Article and Find Full Text PDF

Background: Non-small-cell lung cancer NSCLC is the major diagnosed type of lung cancers in the USA and Europe. It is generally related to poor prognosis and low rates of survival. Oleandrin is a cardiac glycoside occurring naturally in Nerium oleander (Apocynaceae).

View Article and Find Full Text PDF

The mechanism of heat stress-induced injury in the immature oocytes of zebrafish (Danio rerio).

J Reprod Dev

September 2025

Laboratory of Animal Science, College of Agriculture and Marine Science, Kochi University, Kochi 783-8502, Japan.

Immature zebrafish oocytes are highly susceptible to high temperatures, making it difficult to warm cryopreserved oocytes rapidly. In the present study, we aimed to investigate whether thermosensitive channels, lipid mediators, and ferroptosis are involved in heat stress-induced injury in immature zebrafish oocytes. Oocytes were injected with inhibitors of a heat-sensitive channel (TRPV1) and multiple enzymes-cytosolic phospholipase Aα (cPLAα), cyclooxygenases (COXs), arachidonate lipoxygenase 5 (ALOX5), and lysophosphatidylcholine acyltransferase 2 (LPCAT2).

View Article and Find Full Text PDF

Plant sterol ester of α-linolenic acid protects against ferroptosis in metabolic dysfunction-associated fatty liver disease via activating the Nrf2 signaling pathway.

J Nutr Biochem

September 2025

Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, PR CHINA

Increasing evidence indicates that ferroptosis contributes to the occurrence and development of metabolic dysfunction-associated fatty liver disease (MAFLD). This study aimed to investigate the improvement effect of plant sterol ester of α-linolenic acid (PS-ALA) on ferroptosis in hepatocytes and further elucidate the underlying molecular mechanism, focusing on the regulation of Nrf2 signaling. We found that PS-ALA ameliorated liver iron overload and reduced ROS generation and lipid peroxides (MDA and 4-HNE) production both in mice fed a high-fat diet and HepG2 cells induced by oleic acid/erastin.

View Article and Find Full Text PDF