98%
921
2 minutes
20
B-box containing proteins (BBXs) integrate light and various hormonal signals to regulate plant growth and development. Here, we demonstrate that the photomorphogenic repressors BBX28 and BBX29 positively regulate brassinosteroid (BR) signaling in Arabidopsis thaliana seedlings. Treatment with the BR brassinolide stabilized BBX28 and BBX29, which partially depended on BR INSENSITIVE1 (BRI1) and BIN2. bbx28 bbx29 seedlings exhibited larger cotyledon aperture than the wild-type when treated with brassinazole in the dark, which partially suppressed the closed cotyledons of brassinazole resistant 1-1D (bzr1-1D). Consistently, overexpressing BBX28 and BBX29 partially rescued the short hypocotyls of bri1-5 and bin2-1 in both the dark and light, while the loss-of-function of BBX28 and BBX29 partially suppressed the long hypocotyls of bzr1-1D in the light. BBX28 and BBX29 physically interacted with BR-ENHANCED EXPRESSION1 (BEE1), BEE2, and BEE3 and enhanced their binding to and activation of their target genes. Moreover, BBX28 and BBX29 as well as BEE1, BEE2, and BEE3 increased BZR1 accumulation to promote the BR signaling pathway. Therefore, both BBX28 and BBX29 interact with BEE1, BEE2, and BEE3 to orchestrate light and BR signaling by facilitating the transcriptional activity of BEE target genes. Our study provides insights into the pivotal roles of BBX28 and BBX29 as signal integrators in ensuring normal seedling development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9134050 | PMC |
http://dx.doi.org/10.1093/plcell/koac092 | DOI Listing |
Plant Cell Environ
September 2023
Key laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, People's Republic of China.
As an endogenous time-keeping mechanism, the circadian clock benefits plant fitness and adaptation to the rhythmically changed diel environments. The key components within the core oscillator of plant circadian clock have been extensively characterised, however, the fine-tuning circadian regulators are still less identified. Here, we demonstrated that BBX28 and BBX29, the two B-Box V subfamily members lacking DNA-binding motifs, are involved in the regulation of Arabidopsis circadian clock.
View Article and Find Full Text PDFPlant Cell
May 2022
Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
B-box containing proteins (BBXs) integrate light and various hormonal signals to regulate plant growth and development. Here, we demonstrate that the photomorphogenic repressors BBX28 and BBX29 positively regulate brassinosteroid (BR) signaling in Arabidopsis thaliana seedlings. Treatment with the BR brassinolide stabilized BBX28 and BBX29, which partially depended on BR INSENSITIVE1 (BRI1) and BIN2.
View Article and Find Full Text PDFPlant Mol Biol
May 2021
State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310027, Hangzhou, China.
This paper demonstrates that BBX28 and BBX29 proteins in Arabidopsis promote flowering in association with the CO-FT regulatory module at low ambient temperature under LD conditions. Flowering plants integrate internal developmental signals with external environmental stimuli for precise flowering time control. The expression of BBX29 is up-regulated by low temperature treatment, but the biological function of BBX29 in low temperature response is unknown.
View Article and Find Full Text PDFPlant J
October 2020
State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
Light is one of the key environmental cues controlling photomorphogenic development in plants. A group of B-box (BBX) proteins play critical roles in this developmental process through diverse regulatory mechanisms. In this study we report that BBX29 acts as a negative regulator of light signaling.
View Article and Find Full Text PDF