98%
921
2 minutes
20
Self-healing materials behave with irreplaceable advantages in biomimetic intelligent robots (BIR) for avoiding or reducing safety hazards and economic losses from accidental damage during service. However, the self-healing ability is unreservedly lost and even becomes rigid and fragile in the cryogenic environment where BIR are precisely needed. Here, the authors report a versatile ionic hydrogel with fast self-healing ability, ultra-stretchability, and stable conductivity, even at -80 °C. The hydrogel is systematically optimized to improve a hydrogen-bonded network nanostructure, coordinated achieving a quick self-healing ability within 10 min, large deformation tolerance of over 7000%, superior conductivity of 11.76 S cm and anti-freezing ability, which is difficult to obtain simultaneously. Such a hydrogel provides new opportunities for artificial electronic devices in harsh environments. As a prospective application, they fabricate an artificial nerve fiber by mimicking the structure and functions of the myelinated axon, exhibiting the property of fast and potential-gated signal transmission. This artificial nerve fiber is integrated into a robot for demonstrating a real-time high fidelity and high throughput information interaction under big deformation and cryogenic temperature. The hydrogel and bionic device will bring pioneering functions for robots and open a broad application scenario in extreme conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202105416 | DOI Listing |
Front Neural Circuits
September 2025
Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan.
Introduction: Understanding how neural networks process complex patterns of information is crucial for advancing both neuroscience and artificial intelligence. To investigate fundamental principles of neural computation, we examined whether dissociated neuronal cultures, one of the most primitive living neural networks, exhibit regularity sensitivity beyond mere stimulus-specific adaptation and deviance detection.
Methods: We recorded activity to oddball electrical stimulation paradigms from dissociated rat cortical neurons cultured on high-resolution CMOS microelectrode arrays.
J Glaucoma
September 2025
Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, United States.
Precis: Artificial intelligence applied to OCTA images demonstrated high accuracy in estimating 24-2 visual field maps by leveraging information from pararpapillary area.
Purpose: To develop deep learning (DL) models estimating 24-2 visual field (VF) maps from optical coherence tomography angiography (OCTA) optic nerve head (ONH) en face images.
Methods: A total of 3148 VF OCTA pairs were collected from 994 participants (1684 eyes).
Am J Ophthalmol
September 2025
Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Duke-NUS Graduate Medical School, Singapore; Department of Ophthalmology, Emory University School of Medicine, Emory University; Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta
Purpose: To characterize the 3D structural phenotypes of the optic nerve head (ONH) in patients with glaucoma, high myopia, and concurrent high myopia and glaucoma, and to evaluate their variations across these conditions.
Design: Retrospective cross-sectional study.
Participants: A total of 685 optical coherence tomography (OCT) scans from 754 subjects of Singapore-Chinese ethnicity, including 256 healthy (H), 94 highly myopic (HM), 227 glaucomatous (G), and 108 highly myopic with glaucoma (HMG) cases METHODS: We segmented the retinal and connective tissue layers from OCT volumes and their boundary edges were converted into 3D point clouds.
ACS Nano
September 2025
Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Vagus nerve stimulation (VNS) is a promising therapy for neurological and inflammatory disorders across multiple organ systems. However, conventional rigid interfaces fail to accommodate dynamic mechanical environments, leading to mechanical mismatches, tissue irritation, and unstable long-term interfaces. Although soft neural interfaces address these limitations, maintaining mechanical durability and stable electrical performance remains challenging.
View Article and Find Full Text PDFInt Ophthalmol
September 2025
Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology and Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technolog
Purpose: To analyze macular microvascular networks and investigate correlations between visual acuity and quantitative parameters in patients with Leber's hereditary optic neuropathy (LHON) using optical coherence tomography angiography (OCTA).
Methods: An observational, cross-sectional study was conducted, including 25 eyes from 25 genetically confirmed chronic LHON patients and 25 eyes from 25 age-matched healthy controls. Images were obtained using a spectral domain OCTA system.