98%
921
2 minutes
20
Plasmid expression level heterogeneity in Cupriavidus necator was studied in response to stringent culture conditions, supposed to enhance plasmid instability, through plasmid curing strategies. Two plasmid curing strategies were compared based on their efficiency at generating heterogeneity in batch: rifampicin addition and temperature increase. A temperature increase from 30° to 37 °C was the most efficient plasmid curing strategy. To generate a heterogeneous population in terms of plasmid expression levels, successive batches at supra-optimal culture temperature (i.e. 37 °C) were initially conducted. Three distinct fluorescent subpopulations P (not fluorescent), P (low fluorescence intensity, median = 1 10) and P (high fluorescence intensity, median = 6 10) were obtained. From there, the chemostat culture was implemented to study the long-term stress response under well-controlled environment at defined dilution rates. For dilution rates comprised between 0.05 and 0.10 h, the subpopulation P (62% vs 90%) was favored compared to P cells (54% vs 1%), especially when growth rate increased. Our biosensor was efficient at discriminating subpopulation presenting different expression levels under stringent culture conditions. Plus, we showed that controlling growth kinetics had a stabilizing impact on plasmid expression levels, even under heterogeneous expression conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2021.12.015 | DOI Listing |
ACS Synth Biol
September 2025
The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China.
Human Bone Morphogenetic Protein-2 (hBMP-2) serves as a critical regulator in bone and cartilage formation; however, its industrial application is hindered by its inherent tendency to form inclusion bodies in prokaryotic expression systems. To address this issue, we established a recombinant hBMP-2 (rhBMP-2) expression system using the pCold II plasmid and the SHuffle T7 strain. We explored several strategies to enhance the solubility of rhBMP-2, including coexpression with molecular chaperones, vesicle-mediated secretory expression, fusion expression with synthetic intrinsically disordered proteins (SynIDPs), and fusion expression with small-molecule peptide tags.
View Article and Find Full Text PDFBrain Behav
September 2025
Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P. R. China.
Background: Ischemic stroke (IS) is a common neurological disease with a significant financial burden but lacks effective drugs. This study sought to explore the mechanisms underlying MAP kinase-interacting serine/threonine-protein kinase 2 (MKNK2), a gene enriched in the hypoxia-inducible factor-1 (HIF-1) signaling, in IS-related neurological injury.
Methods: Middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R) models were used in vivo and in vitro.
Adv Pharm Bull
July 2025
Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.
Purpose: SARS-CoV-2 infection may lead to a worse prognosis in COVID-19 patients by inducing syncytia formation which implies intercellular transmission and immune evasion. Hesperidin (HSD) and hesperetin (HST) are two citrus flavonoids that demonstrate the potential to interfere with spike/human angiotensin-converting enzyme-2 (hACE2) binding and show an inhibitory effect in the SARS-CoV-2 pseudovirus internalization model. Here, we determined the effects of HSD and HST to inhibit syncytia formation using in vitro cell models.
View Article and Find Full Text PDFBiotechnol Bioeng
September 2025
MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China.
Plasmids are commonly employed in the delivery of clustered regularly interspaced shortpalindromic repeats (CRISPR)/CRISPR-associated (Cas) components for genome editing. However, the absence of heritable plasmids in numerous organisms limits the development of CRISPR/Cas genome editing tools. Moreover, cumbersome procedures for plasmid construction and curing render genome editing time-consuming.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
September 2025
Department of Stomatology, Air Force Medical Center, Air Force Medical University, 30 Fucheng Road, Beijing, 100142, PR China.
TP53TG1 is a long non-coding RNA related to the TP53 gene, which plays an important role in various biological processes such as tumorigenesis, cell cycle regulation, and DNA damage repair. In recent years, researchers have begun to explore the role of TP53TG1 in dental pulp biology, especially its potential impact on pulpitis and other pulp-related diseases. However, the role of TP53TG1 in human dental pulp stem cells (hDPSCs) remains unclear.
View Article and Find Full Text PDF