Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Ischemic stroke (IS) is a common neurological disease with a significant financial burden but lacks effective drugs. This study sought to explore the mechanisms underlying MAP kinase-interacting serine/threonine-protein kinase 2 (MKNK2), a gene enriched in the hypoxia-inducible factor-1 (HIF-1) signaling, in IS-related neurological injury.

Methods: Middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R) models were used in vivo and in vitro. Rats were infected with lentiviral vectors harboring knockdown or overexpression of the target genes, followed by MCAO/R to conduct 2,3,5-triphenyltetrazolium chloride, HE, Fluoro-Jade C, and TUNEL, enzyme-linked immunosorbent assay, immunohistochemistry, and neurological deficits assessment. The regulation of Krueppel-like factor 7 (KLF7) on MKNK2 was analyzed by ChIP and dual-luciferase assays. The effects of the KLF7/MKNK2/HIF-1 axis on the M1 or M2 polarization of rat microglia were demonstrated by the transfection of knockdown or overexpression plasmids into the cells.

Results: MCAO/R-treated rat brain tissues and OGD/R-treated rat microglia showed MKNK2 upregulation along with activation of the HIF-1 signaling, whereas KLF7 expression was downregulated. Knockdown of MKNK2 inhibited the HIF-1 signaling and M1 microglia polarization, whereas it promoted M2 polarization. KLF7 repressed the MKNK2 transcription, thereby achieving the same effect as the knockdown of MKNK2 in vitro, which was reversed by combined overexpression of MKNK2. Knockdown of MKNK2 or overexpression of KLF7 ameliorated MCAO/R-induced brain damage and neurological injury in rats. MKNK2 overexpression reversed the alleviating effect of KLF7 overexpression on pathological brain injury in rats.

Conclusion: Significant downregulation of KLF7 expression after IS exacerbated pathological brain damage through the MKNK2-mediated HIF-1 pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1002/brb3.70850DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12417964PMC

Publication Analysis

Top Keywords

hif-1 signaling
12
knockdown mknk2
12
mknk2
9
microglia polarization
8
neurological injury
8
knockdown overexpression
8
rat microglia
8
klf7 expression
8
mknk2 overexpression
8
brain damage
8

Similar Publications

Endothelial cell-ILC3 crosstalk via the ET-1/EDNRA axis promotes NKp46ILC3 glycolysis to alleviate intestinal inflammation.

Cell Mol Immunol

September 2025

Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences); Department of Immunology, School of Basic Medical Sciences; Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Gua

Communication between group 3 innate lymphoid cells (ILC3) and other immune cells, as well as intestinal epithelial cells, is pivotal in regulating intestinal inflammation. This study, for the first time, underscores the importance of crosstalk between intestinal endothelial cells (ECs) and ILC3. Our single-cell transcriptome analysis combined with protein expression detection revealed that ECs significantly increased the population of interleukin (IL)-22 ILC3 through interactions mediated by endothelin-1 (ET-1) and its receptor endothelin A receptor (EDNRA).

View Article and Find Full Text PDF

Expression of metabolic genes in NK cells is associated with clinical outcomes in patients with severe COVID-19: a brief report.

Front Cell Infect Microbiol

September 2025

Universidad Autónoma de Nuevo León, Servicio y Departamento de Inmunología, Facultad de Medicina, Monterrey, NL, Mexico.

Natural killer (NK) cells are innate lymphocytes with cytotoxic activity against tumors and viruses. The pandemic of the coronavirus disease 2019 (COVID-19) has increased the investigation of their role in disease severity. However, their functional status and modulators remain controversial.

View Article and Find Full Text PDF

Photoacoustic-imaging nanomotors enhance tumor penetration and alleviate hypoxia for photodynamic therapy of breast cancer.

Biomater Sci

September 2025

Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, P.R. China. iamzgteng@

Breast cancer is the most prevalent malignancy worldwide, yet conventional therapies are invasive and prone to resistance, recurrence, and metastasis. Photodynamic therapy (PDT) is a promising noninvasive modality, but its efficacy is limited by tumor hypoxia and poor photosensitizer delivery. Here, we report a photoacoustic-imaging nanomotor, PPIC, which addresses these challenges through integrated functions of oxygen production, deep tissue penetration and photoacoustic imaging.

View Article and Find Full Text PDF

Background: Ischemic stroke (IS) is a common neurological disease with a significant financial burden but lacks effective drugs. This study sought to explore the mechanisms underlying MAP kinase-interacting serine/threonine-protein kinase 2 (MKNK2), a gene enriched in the hypoxia-inducible factor-1 (HIF-1) signaling, in IS-related neurological injury.

Methods: Middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R) models were used in vivo and in vitro.

View Article and Find Full Text PDF

To explore the role and mechanism of the hypoxia-inducible factor-1 (HIF-1) pathway in rat retinal precursor R28 cell injury caused by the (E50K) mutation. This experimental study was conducted from November 2023 to October 2024. The retinas of 18-month-old wild-type (WT) mice and normal tension glaucoma mice with the (E50K) mutation were extracted for proteomic analysis.

View Article and Find Full Text PDF