The anammox coupled partial-denitrification process in an integrated granular sludge and fixed-biofilm reactor developed for mainstream wastewater treatment: Performance and community structure.

Water Res

National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and

Published: February 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study describes an integrated granular sludge and fixed-biofilm (iGB) reactor innovatively designed to carry out the anammox/partial-denitrification (A/PD) process for nitrogen removal with mainstream municipal wastewater. The iGB-A/PD reactor consists of anammox granules inoculated in the lower region of reactor and an acclimated fixed-biofilm positioned in the upper region. Compared to the other reported A/PD systems for mainstream wastewater treatment, this iGB-A/PD reactor is notable due to its higher quality effluent with a total inorganic nitrogen (TIN) of ∼3 mg•L and operation at a high nitrogen removal rate (NRR) of 0.8 ± 0.1 kg-N•m•d. Reads-based metatranscriptomic analysis found that the expression values of hzsA and hdh, key genes associated with anammox, were much higher than other functional genes on nitrogen conversion, confirming the major roles of the anammox bacteria in nitrogen bio-removal. In both regions of the reactor, the nitrate reduction genes (napA/narG) had expression values of 56-99 RPM, which were similar to that of the nitrite reduction genes (nirS/nirK). The expression reads from genes for dissimilatory nitrate reduction to ammonium (DNRA), nrfA and nirB, were unexpectedly high, and were over the half of the levels of reads from genes required for nitrate reduction. Kinetic assays confirmed that the granules had an anammox activity of 16.2 g-NH-N•kg-VSS•d and a nitrate reduction activity of 4.1 g-N•kg-VSS•d. While these values were changed to be 4.9 g- NH-N•kg-VSS•dand 4.3 g-N•kg-VSS•d respectively in the fixed-biofilm. Mass flux determination found that PD and DNRA was responsible for ∼50% and ∼25% of nitrate reduction, respectively, in the whole reactor, consistent with high effluent quality and treatment efficiency via a nitrite loop. Metagenomic binning analysis revealed that new and unidentified anammox species, affiliated with Candidatus Brocadia, were the dominant anammox organisms. Myxococcota and Planctomycetota were the principal organisms associated with the PD and DNRA processes, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2021.117964DOI Listing

Publication Analysis

Top Keywords

nitrate reduction
20
integrated granular
8
granular sludge
8
sludge fixed-biofilm
8
mainstream wastewater
8
wastewater treatment
8
nitrogen removal
8
igb-a/pd reactor
8
expression values
8
reduction genes
8

Similar Publications

g-CN/BiO hetero-nanosheets as a superior electrocatalyst for nitrate reduction to ammonia.

Chem Commun (Camb)

September 2025

State Key Laboratory of New Textile Materials & Advanced Processing Technology, College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China.

The faradaic efficiency of the electro-synthesis of ammonia using the nitrate reduction reaction (NORR) relies on an electrocatalyst to hydrogenate NO and simultaneously suppress the hydrogen evolution reaction (HER). Due to the formation of a heterostructure, the faradaic efficiency of g-CN/BiO reaches 91.12% at -0.

View Article and Find Full Text PDF

Nitric oxide (NO) is essential for cardiovascular health and is purported as an ergogenic aid. Endothelial dysfunction and reduced endogenous NO production are hallmarks of heart failure (HF), which may contribute to impaired exercise capacity. Oral inorganic nitrate supplementation offers an exogenous route to increase bioavailable NO via reduction of nitrate by oral commensal bacteria.

View Article and Find Full Text PDF

The accumulation of nitrate (NO) from agricultural runoff poses a growing threat to ecosystems and public health. Converting nitrate into ammonia (NH) through the electrochemical nitrate reduction reaction (NORR) offers a promising strategy to mitigate environmental contamination while creating a sustainable circular route to fertilizer production. However, achieving high NH production and energy efficiency remains challenging.

View Article and Find Full Text PDF

Preparation of TiCTMXene-based copper/cobalt composites for electrocatalytic ammonia synthesis.

J Colloid Interface Sci

September 2025

School of Physics and Materials Science, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, Jiangxi 330031, China; College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China. Electronic address:

MXenes represent exceptionally promising electrocatalytic materials for ammonia synthesis, owing to their outstanding electrical conductivity, modifiable surface functional groups, exceptional hydrophilicity, high specific surface area, and electronegative surface characteristics. In this investigation, we systematically demonstrate that the persistent challenge of Cu and Co nanoparticle agglomeration can be effectively addressed through the in-situ growth of bimetallic CuCo nanoparticles on TiCTMXene nanosheets. This innovative approach significantly enlarges the electrochemically active surface area, maximizes the exposure of catalytically active sites, and optimizes mass transport properties, consequently leading to substantially enhanced electrocatalytic performance for ammonia synthesis.

View Article and Find Full Text PDF

The differentiation of the nitrate reduction pathway is of great significance in the ecosystem, as it determines the occurrence form of ecosystem N. In order to explore the impact and mechanism of different algal dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) on differentiation of nitrate (NO-N) reduction pathway, small-scale enclosure experiment was conducted to analyze the DON and DOP composition, nutrient level, microbial community composition and NO-N reduction pathway in ponds with Microcystis and Dolichospermum blooms. The main DON produced by Microcystis included lipids and proteins as well as carbohydrate which were readily degradable, whereas the DOP produced by Dolichospermum predominantly consists of readily degradable forms such as carbohydrate and protein.

View Article and Find Full Text PDF