Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Combined potentiometric titration and isothermal titration calorimetry (ITC) methods were used to study the interactions of nickel(II) ions with the N-terminal fragments and histidine-rich fragments of Hpn-like protein from two strains (11637 and 26695). The ITC measurements were performed at various temperatures and buffers in order to extract proton-independent reaction enthalpies of nickel binding to each of the studied protein fragments. We bring up the problem of ITC results of nickel binding to the Hpn-like protein being not always compatible with those from potentiometry and MS regarding the stoichiometry and affinity. The roles of the ATCUN motif and multiple His and Gln residues in Ni(II) binding are discussed. The results provided the possibility to compare the Ni(II) binding properties between N-terminal and histidine-rich part of Hpn-like protein and between N-terminal parts of two Hpn-like strains, which differ mainly in the number of glutamine residues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8704837PMC
http://dx.doi.org/10.3390/ijms222413210DOI Listing

Publication Analysis

Top Keywords

nickel binding
12
hpn-like protein
12
binding hpn-like
8
niii binding
8
binding
5
hpn-like
5
comparative study
4
study nickel
4
hpn-like polypeptides
4
polypeptides strains
4

Similar Publications

Photovoltaic driven carrier-facilitated membrane process enables efficient and low-carbon recovery of spent lithium ion batteries.

Water Res

September 2025

Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China. Electronic address:

The increasing production of lithium ion batteries (LIBs) necessitates the development of green and sustainable technologies for their recycling. Unfortunately, most of the recycling technologies used are always associated with high energy and chemical reagents consumption, posing a great risk to the environment. Herein, we propose a photovoltaic driven carrier-facilitated electrodialytic membrane process for low carbon recovery of spent ternary LIBs.

View Article and Find Full Text PDF

The rapid increase in population has driven the demand for fossil fuel energy, contributing to increased carbon emissions that ultimately accelerate global warming and climate change. Battery storage systems have many advantages over conventional energy sources. However, they face limitations such as energy storage, cost, and environmental hazards that come with the use of chemical binders.

View Article and Find Full Text PDF

The difference in hydroxyl adsorption between Ni and Fe sites in NiFeOOH limits the efficient dual-site synergistic mechanism (DSSM) during oxygen evolution reaction (OER). Here, a novel needle-array electrodeposition is reported for the scalable and efficient fabrication of Co and Y co-doped NiFeOOH catalyst. It achieves an ultralow overpotential of 270 mV at 1 A cm with a small Tafel slope of 30.

View Article and Find Full Text PDF

Dual active site bridging adsorption mechanism of Ni-WO for boosting urea electrolysis at large current density.

J Colloid Interface Sci

August 2025

Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China. Electronic address:

Nickel-based catalysts have recently become promising candidates for urea electrolysis. However, their application is hindered by strong interaction with *COO intermediates. Herein, oxyphilic WO is introduced into Ni to construct dual active sites for regulating reaction intermediate adsorption.

View Article and Find Full Text PDF

Oriented near-surface catalytic oxidation through strengthening surface-localized radical generation over CoFe bimetallic sites: Synergistic mechanism and electro-assisted regeneration.

J Colloid Interface Sci

August 2025

College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China. Electronic address:

Nanocatalysts-catalyzed heterogeneous advanced oxidation process offers a promising option for decentralized wastewater treatment, whereas free reactive oxygen species (ROS) suffer from ultrashort lifetime and self-quenching effect. Herein, bimetallic CoFe-layered double hydroxide nanorods are synthesized over three-dimensional conductive nickel foam (CoFe-LDHs/NF) to achieve high proportion of surface-localized ROS by peroxymonosulfate (PMS) activation. The Fe incorporation motivates electron redistribution of Co-Fe dual metal sites in stoichiometrically-optimized CoFe-LDHs/NF, and promotes the binding affinity of Co sites for surface complexed PMS and ROS.

View Article and Find Full Text PDF