Publications by authors named "Joanna Watly"

Antimicrobial peptides (AMPs), including mucin-derived sequences, play a vital role in host defense at mucosal surfaces by modulating microbial interactions and supporting innate immunity. However, their susceptibility to proteolytic cleavage limits their protective efficacy. This study investigates the peptide FPNPHQPPKHPDK (L1), derived from human salivary mucin MUC7, and its proteolytic fragments L2 (FPNPHQPPK) and L3 (HPDK), generated by trypsin cleavage.

View Article and Find Full Text PDF

Antimicrobial peptides are part of the host's innate immune response and have high therapeutic potential, especially in the complexes with Zn(II) ions. However, this potential is limited by poor proteolytic stability. To prevent this, their peptidomimetic modifications, such as D-amino acid substitution or strategy, are a worthy alternative.

View Article and Find Full Text PDF

Fragments of MUC7, a salivary protein involved in nonimmune defense, arise from proteolytic cleavage in saliva and exhibit antimicrobial properties. However, their therapeutic use is limited by low stability due to further degradation. To address this, a native MUC7 fragment was modified using d-amino acids and the strategy.

View Article and Find Full Text PDF

PvHCt, a 23-amino acid long, histidine-rich peptide derived from shrimp, becomes strongly antimicrobial upon Cu(ii) ion binding. We describe Zn(ii) and Cu(ii) complexes of this peptide, aiming to understand how metal binding and structure correlates to biological activity. Using NMR, UV-vis, CD and FTIR spectroscopies, along with cyclic voltammetry, potentiometry, and DFT calculations, we demonstrate that Cu(ii) binds to the central and C-terminal regions of the peptide, inducing significant structural changes.

View Article and Find Full Text PDF

The relationship between the coordination chemistry and antimicrobial activity of Zn(II) and Cu(II)-bound histatins, salivary antimicrobial peptides, remains enigmatic. We focus on metal complexes of histatin 3 and its two products of hydrolysis: histatin 4 and its N-terminal fragment (histatin 3-4). The thermodynamic stability of these complexes is quite expected - the binding of Cu(II) the ATCUN motif results in the formation of very stable complexes.

View Article and Find Full Text PDF

The necessity to move away from conventional antibiotic therapy has sparked interest in antimicrobial peptides (AMPs). One fascinating example is human CCL-28 chemokine produced by acinar epithelial cells in the salivary glands. It can also be released into the oral cavity with saliva, playing a crucial role in oral protection.

View Article and Find Full Text PDF

Piscidins, antimicrobial peptides isolated from fish, are potent against a variety of human pathogens; they show minimum inhibitory concentration values comparable to those of commercially used antimicrobials. Piscidins 1 and 2 are generally more effective than piscidin 3 when applied alone; the contrary is observed for their metal complexes: Zn(II) and Cu(II) coordination does not enhance the efficacy of piscidins 1 and 2, while a moderate enhancement is observed for piscidin 3. All three piscidins bind Cu(II) in a so-called albumin-like binding mode, while for Zn(II) complexes, two coordination modes are observed: piscidins 1 and 2 bind Zn(II) by imidazole nitrogens from His4, His11, and His17 side chains; piscidin 3 coordinates Zn(II) by His3, His4, and His11 imidazole nitrogens and additionally supports the interaction, formed by carbonyl oxygen from His4.

View Article and Find Full Text PDF

Mucin 7 (MUC7) is one of the salivary proteins whose role in the innate immune system is widely known, but still, neither its mechanism of action nor the impact of its metal coordination is fully understood. MUC7 and its fragments demonstrate potent antimicrobial activity, serving as a natural defense mechanism for organisms against pathogens. This study delves into the bioinorganic chemistry of MUC7 fragments (L1─EGRERDHELRHRRHHHQSPK; L2─EGRERDHELRHRR; L3─HHHQSPK) and their complexes with Cu(II) and Zn(II) ions.

View Article and Find Full Text PDF

Phytochelatins (PCs) are poly-Cys peptides containing a repeating γ-Glu-Cys motif synthesized in plants, algae, certain fungi, and worms by PC synthase from reduced glutathione. It has been shown that an excess of toxic metal ions induces their biosynthesis and that they are responsible for the detoxification process. Little is known about their participation in essential metal binding under nontoxic, basal conditions under which PC synthase is active.

View Article and Find Full Text PDF

This work focuses on the relationship between the coordination chemistry and antimicrobial activity of Zn(II) and Cu(II) complexes of histatin 5 and the products of its hydrolysis: its N-terminal fragment (histatin 5-8) and C-terminal fragment (histatin 8). Cu(II) coordinates in an albumin-like binding mode and Zn(II) binds to up to 3 His imidazoles. The antimicrobial activity of histatins and their metal complexes (i) strongly depends on pH - they are more active at pH 5.

View Article and Find Full Text PDF

The fungal cell wall and cell membrane are an important target for antifungal therapies, and a needle-like cell wall or membrane disruption may be an entirely novel antifungal mode of action. In this work, we show how the coordination of Zn(II) triggers the antifungal properties of shepherin II, a glycine- and histidine-rich antimicrobial peptide from the root of Capsella bursa-pastoris. We analyze Cu(II) and Zn(II) complexes of this peptide using experimental and theoretical methods, such as: mass spectrometry, potentiometry, UV-Vis and CD spectroscopies, AFM imaging, biological activity tests and DFT calculations in order to understand the correlation between their metal binding mode, structure, morphology and biological activity.

View Article and Find Full Text PDF

Shepherin I is a glycine- and histidine-rich antimicrobial peptide from the root of a shepherd's purse, whose antimicrobial activity was suggested to be enhanced by the presence of Zn(II) ions. We describe Zn(II) and Cu(II) complexes of this peptide, aiming to understand the correlation between their metal binding mode, structure, morphology, and biological activity. We observe a logical sequence of phenomena, each of which is the result of the previous one: (i) Zn(II) coordinates to shepherin I, (ii) causes a structural change, which, in turn, (iii) results in fibril formation.

View Article and Find Full Text PDF

Zn(II) is essential for bacterial survival and virulence. In host cells, its abundance is extremely limited, thus, bacteria have evolved transport mechanisms that enable them to take up this essential metal nutrient. encodes two solute binding proteins (SBPs) - ZnuA and AztC, which are responsible for zinc acquisition from the host cells.

View Article and Find Full Text PDF

Histidine and cysteine residues, with their imidazole and thiol moieties that deprotonate at approximately physiological pH values, are primary binding sites for Zn(II), Ni(II) and Fe(II) ions and are thus ubiquitous both in peptidic metallophores and in antimicrobial peptides that may use nutritional immunity as a way to limit pathogenicity during infection. We focus on metal complex solution equilibria of model sequences encompassing Cys-His and His-Cys motifs, showing that the position of histidine and cysteine residues in the sequence has a crucial impact on its coordination properties. CH and HC motifs occur as many as 411 times in the antimicrobial peptide database, while similar CC and HH regions are found 348 and 94 times, respectively.

View Article and Find Full Text PDF

The antimicrobial properties of amylin, a 37-amino acid peptide hormone, co-secreted with insulin from the pancreas, are far less known than its antidiabetic function. We provide insight into the bioinorganic chemistry of amylin analogues, showing that the coordination of zinc(II) enhances the antifungal properties of pramlintide, a non-fibrillating therapeutic analogue of amylin. Zinc binds to the N-terminal amino group and His18 imidazole, inducing a kink in the peptide structure, which, in turn, triggers a fibrillization process of the complex, resulting in an amyloid structure most likely responsible for the disruption of the fungal cell.

View Article and Find Full Text PDF

Combined potentiometric titration and isothermal titration calorimetry (ITC) methods were used to study the interactions of nickel(II) ions with the N-terminal fragments and histidine-rich fragments of Hpn-like protein from two strains (11637 and 26695). The ITC measurements were performed at various temperatures and buffers in order to extract proton-independent reaction enthalpies of nickel binding to each of the studied protein fragments. We bring up the problem of ITC results of nickel binding to the Hpn-like protein being not always compatible with those from potentiometry and MS regarding the stoichiometry and affinity.

View Article and Find Full Text PDF

The antimicrobial activity of surfactant-associated anionic peptides (SAAPs), which are isolated from the ovine pulmonary surfactant and are selective against the ovine pathogen , is strongly enhanced in the presence of Zn(II) ions. Both calorimetry and ITC measurements show that the unique Asp-only peptide SAAP3 (DDDDDDD) and its analogs SAAP2 (GDDDDDD) and SAAP6 (GADDDDD) have a similar micromolar affinity for Zn(II), which binds to the N-terminal amine and Asp carboxylates in a net entropically-driven process. All three peptides also bind Cu(II) with a net entropically-driven process but with higher affinity than they bind Zn(II) and coordination that involves the N-terminal amine and deprotonated amides as the pH increases.

View Article and Find Full Text PDF

Phytochelatins (PCs) are short Cys-rich peptides with repeating γ-Glu-Cys motifs found in plants, algae, certain fungi, and worms. Their biosynthesis has been found to be induced by heavy metals-both biogenic and toxic. Among all metal inducers, Cd(II) has been the most explored from a biological and chemical point of view.

View Article and Find Full Text PDF
Article Synopsis
  • Metal ions play a crucial role in enhancing the biological properties of antimicrobial peptides, which are promising but often struggle with metabolic stability.
  • To address this stability issue, researchers are exploring peptidomimetics made from various modified amino acids and peptide structures, such as D-amino acids and cyclopeptides.
  • The text highlights how these novel peptide designs can effectively bind metals and improve antimicrobial activity, presenting a valuable area of study in therapeutic development.
View Article and Find Full Text PDF

Zn(II) is an inhibitor of 's RNA-dependent RNA polymerase, and chloroquine and hydroxychloroquine are Zn(II) ionophores-this statement gives a curious mind a lot to think about. We show results of the first clinical trials on chloroquine (CQ) and hydroxychloroquine (HCQ) in the treatment of COVID-19, as well as earlier reports on the anticoronaviral properties of these two compounds and of Zn(II) itself. Other FDA-approved Zn(II) ionophores are given a decent amount of attention and are thought of as possible COVID-19 therapeutics.

View Article and Find Full Text PDF

The dominant vector of dengue and Zika diseases is a female Aedes aegypti mosquito. Its reproduction is controlled by the formation of an active heterodimer complex of the 20-hydroxyecdysone receptor (EcR) and Ultraspiracle protein (Usp). Although EcR exhibits a structural and functional organization typical of nuclear receptors (NRs), the EcR C-terminus has an additional F domain (AaFEcR) that is rarely present in the NRs superfamily.

View Article and Find Full Text PDF

Consecutive histidine repeats are chosen both by nature and by molecular biologists due to their high affinity towards metal ions. Screening of the human genome showed that transcription factors are extremely rich in His tracts. In this work, we examine two of such His-rich regions from forkhead box and MAFA proteins-MB3 (contains 18 His) and MB6 (with 21 His residues), focusing on the affinity and binding modes of Cu and Zn towards the two His-rich regions.

View Article and Find Full Text PDF

Background: The understanding of the bioinorganic and coordination chemistry of metalloproteins containing unusual poly-Xaa sequences, in which a single amino acid is repeated consecutively, is crucial for describing their metal binding-structure-function relationship, and therefore also crucial for understanding their medicinal potential. To the best of our knowledge, this is the first systematic review on metal complexes with polyXaa sequences.

Methods: We performed a thorough search of high quality peer reviewed literature on poly-Xaa type of sequences in proteins, focusing on their biological importance and on their interactions with metal ions.

View Article and Find Full Text PDF

Protein degradation leads to the formation of endogenous peptides, the biological activity of which is most often unknown. The peptide AGHLDDLPGALSAL, recently isolated from mouse brain homogenates, has been recognized as a fragment of the α-chain of hemoglobin. AGHLDDLPGALSAL has the ability of inhibiting the peripheral hyperalgesic inflammatory responses through the indirect activation of the μ-opioid receptors.

View Article and Find Full Text PDF

The basic knowledge about biological inorganic chemistry, thermodynamics and metal binding sites of metalloproteins is crucial for the understanding of their metal binding-structure-function relationship. Metal-peptide complexes are useful and commonly used models of metal-enzyme active sites, among which copper and zinc models are one of the most extensively studied. HENRYK is a peptide sequence present in numerous proteins, and serves as a potentially tempting binding site for Cu and Zn.

View Article and Find Full Text PDF