Curr Pharmacol Rep
December 2024
Purpose Of Review: Acute myeloid leukemia (AML) is a clonal blood neoplasm with dismal prognosis. Despite the introduction of many novel targeted agents, cytotoxic chemotherapy has remained the standard of care for AML. Differences in mitochondrial metabolism between normal and leukemic cells can be targeted by novel AML therapies, but these agents require a comprehensive efficacy and cytotoxicity evaluation.
View Article and Find Full Text PDFEsophageal squamous cell carcinoma (ESCC) remains a highly aggressive malignancy with limited effective therapeutic options for patients with locally advanced unresectable disease. The study by Wei , featured in this issue, highlights the potential of induction chemoimmunotherapy followed by definitive radiotherapy or concurrent chemoradiotherapy to improve treatment outcomes in this challenging patient population. This retrospective analysis of 132 patients demonstrates promising results, including a median progression-free survival of 14.
View Article and Find Full Text PDFPrimary immune thrombocytopenia (ITP) is an autoimmune disorder characterized by platelet destruction and impaired production, leading to bleeding risk. While immunosuppressive therapies are standard, many patients experience relapses or refractory disease, highlighting the need for novel approaches. Emerging evidence suggests the gut microbiota plays a role in immune regulation, yet its impact on ITP remains unclear.
View Article and Find Full Text PDFBreast cancer is a leading cause of death among women worldwide due to its aggressive nature, early metastasis, and resistance to standard chemotherapy. Doxorubicin (DOX) is a potent anticancer drug and remains one of the most effective treatments for breast cancer. This review delves into the diverse anticancer attributes of DOX, encompassing its ability to induce DNA damage, provoke the production of reactive oxygen species, facilitate various mechanisms of cell death, and promote or enhance an anti-tumor immune response.
View Article and Find Full Text PDFTP53 mutations are common in breast cancer (BC) and are associated with poor prognosis. GD3 synthase (GD3S/ST8SIA1), a gene associated with breast cancer stem cells, is upregulated in tumors with p53 mutations. However, the functional relationship between GD3S and p53 is unknown.
View Article and Find Full Text PDFWorld J Clin Oncol
April 2025
This editorial provides insights into the pivotal role of checkpoint kinase 1 (CHEK1) as both a biomarker and therapeutic target in colorectal cancer (CRC), based on findings from a recent study by Pang . Using single-cell RNA sequencing and immunohistochemistry, the study demonstrates significant CHEK1 overexpression in CRC tissues and identifies nitidine chloride as a potent CHEK1 inhibitor that disrupts DNA damage repair pathways. These findings underscore the therapeutic potential of CHEK1 inhibition and highlight the need for further research to address gaps in CRC treatment.
View Article and Find Full Text PDFBackground: Bone marrow (BM) adipocytes play a critical role in the progression of both solid tumor metastases and expansion of hematological malignancies across a spectrum of ages, from pediatric to aging populations. Single-point biopsies remain the gold standard for monitoring BM diseases, including hematologic malignancies, but these are limited in capturing the full complexity of loco-regional and global BM microenvironments. Non-invasive imaging techniques such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and Positron Emission Tomography (PET) could provide valuable alternatives for real-time evaluation in both preclinical translational and clinical studies.
View Article and Find Full Text PDFAcute myeloid leukemias (AMLs) comprise a group of genetically heterogeneous hematological malignancies that result in the abnormal growth of leukemic cells and halt the maturation process of normal hematopoietic stem cells. Despite using molecular and cytogenetic risk classification to guide treatment decisions, most AML patients survive for less than five years. A deeper comprehension of the disease's biology and the use of new, targeted therapy approaches could potentially increase cure rates.
View Article and Find Full Text PDFBiomed Pharmacother
December 2024
Chimeric Antigen Receptor T-cell (CAR-T) therapy has revolutionized the treatment of hematological malignancies. However, its effectiveness against solid tumors remains constrained by challenges such as T-cell exhaustion, limited persistence, and off-target effects. These challenges highlight critical gaps in current CAR-T cell therapeutic strategies, particularly for solid tumor applications.
View Article and Find Full Text PDFThe upregulation of B-cell lymphoma 2 (BCL2) and B-cell lymphoma-extra large (BCL-XL), 2 proteins in the BCL2 family of proteins, leads to a disproportional expression of prodeath and prosurvival proteins in favor of leukemia survival, tumorigenesis, and chemoresistance. In different subsets of acute lymphoblastic leukemia (ALL), the proportion of these 2 proteins varies, and their potential as therapeutic targets needs detailed characterization. Here, we investigated BCL2 and BCL-XL, the genes that encode BCL2 and BCL-XL, and their expression differences between B-cell acute lymphoblastic leukemia (B-ALL) and T-cell ALL (T-ALL).
View Article and Find Full Text PDFThe necessity to move away from conventional antibiotic therapy has sparked interest in antimicrobial peptides (AMPs). One fascinating example is human CCL-28 chemokine produced by acinar epithelial cells in the salivary glands. It can also be released into the oral cavity with saliva, playing a crucial role in oral protection.
View Article and Find Full Text PDFMalignancies are reliant on glutamine as an energy source and a facilitator of aberrant DNA methylation. We demonstrate preclinical synergy of telaglenastat (CB-839), a selective glutaminase inhibitor, combined with azacytidine (AZA), followed by a single-arm, open-label, phase 1b/2 study in persons with advanced myelodysplastic syndrome (MDS). The dual primary endpoints evaluated clinical activity, safety and tolerability; secondary endpoints evaluated pharmacokinetics, pharmacodynamics, overall survival, event-free survival and duration of response.
View Article and Find Full Text PDFBioelectrochemistry
February 2025
Alzheimer's Disease (AD), reported for the first time in 1906, is a common disease that remains incurable to this day. In the past, a family of treatments using Cu(II) chelators failed during clinical trials, evidencing the importance of pre-clinical studies. In this work, we performed electrochemical characterisation of TDMQ20, a new potential drug against AD, using electrochemistry and spectroelectrochemistry.
View Article and Find Full Text PDFAcute myeloid leukemia AML), an aggressive malignancy of hematopoietic stem cells, is characterized by the blockade of cell differentiation, uncontrolled proliferation, and cell expansion that impairs healthy hematopoiesis and results in pancytopenia and susceptibility to infections. Several genetic and chromosomal aberrations play a role in AML and influence patient outcomes. is a key tumor suppressor gene involved in a variety of cell features, such as cell-cycle regulation, genome stability, proliferation, differentiation, stem-cell homeostasis, apoptosis, metabolism, senescence, and the repair of DNA damage in response to cellular stress.
View Article and Find Full Text PDFThe investigation of the mechanisms behind p53 mutations in acute myeloid leukemia (AML) has been limited by the lack of suitable mouse models, which historically have resulted in lymphoma rather than leukemia. This study introduces two new AML mouse models. One model induces mutant p53 and Mdm2 haploinsufficiency in early development, showing the role of Mdm2 in myeloid-biased hematopoiesis and AML predisposition, independent of p53.
View Article and Find Full Text PDFInterferon gamma (IFNγ) is a critical cytokine known for its diverse roles in immune regulation, inflammation, and tumor surveillance. However, while IFNγ levels were elevated in sera of most newly diagnosed acute myeloid leukemia (AML) patients, its complex interplay in AML remains insufficiently understood. We aim to characterize these complex interactions through comprehensive bulk and single-cell approaches in bone marrow of newly diagnosed AML patients.
View Article and Find Full Text PDFThe venetoclax BCL2 inhibitor in combination with hypomethylating agents represents a cornerstone of induction therapy for older AML patients, unfit for intensive chemotherapy. Like other targeted therapies, venetoclax-based therapies suffer from innate and acquired resistance. While several mechanisms of resistance have been identified, the heterogeneity of resistance mechanism across patient populations is poorly understood.
View Article and Find Full Text PDFDNA damage resistance is a major barrier to effective DNA-damaging therapy in multiple myeloma (MM). To discover mechanisms through which MM cells overcome DNA damage, we investigate how MM cells become resistant to antisense oligonucleotide (ASO) therapy targeting Interleukin enhancer binding factor 2 (ILF2), a DNA damage regulator that is overexpressed in 70% of MM patients whose disease has progressed after standard therapies have failed. Here, we show that MM cells undergo adaptive metabolic rewiring to restore energy balance and promote survival in response to DNA damage activation.
View Article and Find Full Text PDFResistance to apoptosis in acute myeloid leukemia (AML) cells causes refractory or relapsed disease, associated with dismal clinical outcomes. Ferroptosis, a mode of non-apoptotic cell death triggered by iron-dependent lipid peroxidation, has been investigated as potential therapeutic modality against therapy-resistant cancers, but our knowledge of its role in AML is limited. We investigated ferroptosis in AML cells and identified its mitochondrial regulation as a therapeutic vulnerability.
View Article and Find Full Text PDFVenetoclax (VEN), in combination with low dose cytarabine (AraC) or a hypomethylating agent, is FDA approved to treat acute myeloid leukemia (AML) in patients who are over the age of 75 or cannot tolerate standard chemotherapy. Despite high response rates to these therapies, most patients succumb to the disease due to relapse and/or drug resistance, providing an unmet clinical need for novel therapies to improve AML patient survival. ME-344 is a potent isoflavone with demonstrated inhibitory activity toward oxidative phosphorylation (OXPHOS) and clinical activity in solid tumors.
View Article and Find Full Text PDFFront Oncol
November 2023
Macrophages represent an important component of the innate immune system. Under physiological conditions, macrophages, which are essential phagocytes, maintain a proinflammatory response and repair damaged tissue. However, these processes are often impaired upon tumorigenesis, in which tumor-associated macrophages (TAMs) protect and support the growth, proliferation, and invasion of tumor cells and promote suppression of antitumor immunity.
View Article and Find Full Text PDFImmunotherapy, in the form of hematopoietic stem cell transplantation (HSCT), has been part of the standard of care in the treatment of acute leukemia for over 40 years. Trials evaluating novel immunotherapeutic approaches, such as targeting the programmed death-1 (PD-1) pathway, have unfortunately not yielded comparable results to those seen in solid tumors. Major histocompatibility complex (MHC) proteins are cell surface proteins essential for the adaptive immune system to recognize self versus non-self.
View Article and Find Full Text PDFIntroduction: Chronic lymphocytic leukemia (CLL) cells are metabolically flexible and adapt to modern anticancer treatments. Bruton tyrosine kinase (BTK) and B-cell lymphoma-2 (BCL-2) inhibitors have been widely used to treat CLL, but CLL cells become resistant to these treatments over time. CB-839 is a small-molecule glutaminase-1 (GLS-1) inhibitor that impairs glutamine use, disrupts downstream energy metabolism, and impedes the elimination of reactive oxygen species.
View Article and Find Full Text PDFComprehensive investigation of CD8+ T cells in acute myeloid leukemia (AML) is essential for developing immunotherapeutic strategies beyond immune checkpoint blockade. Herein, we performed single-cell RNA profiling of CD8+ T cells from 3 healthy bone marrow donors and 23 newly diagnosed (NewlyDx) and 8 relapsed/refractory (RelRef) AML patients. Cells co-expressing canonical exhaustion markers formed a cluster constituting <1% of all CD8+ T cells.
View Article and Find Full Text PDF