98%
921
2 minutes
20
The basic knowledge about biological inorganic chemistry, thermodynamics and metal binding sites of metalloproteins is crucial for the understanding of their metal binding-structure-function relationship. Metal-peptide complexes are useful and commonly used models of metal-enzyme active sites, among which copper and zinc models are one of the most extensively studied. HENRYK is a peptide sequence present in numerous proteins, and serves as a potentially tempting binding site for Cu and Zn. Maybe more importantly, HENRYK also happens to be the first name of our group leader. The results of this work, which, at the first glance, might seem to be a 'chemical scrabble', went far beyond our expectations and surprised us with a novel, uncommon behavior of a Cu complex with a peptide with a histidine in position one. At low pH, the binding is a typical histamine-like coordination, but with the increase of pH, the imidazole nitrogen is moved to the axial position and replaced with an amide; at basic pH, the binding mode is a {NH, 3N} one in the equatorial plane. It is important to note, that no dimeric species are formed in between. Such binding is thermodynamically much more stable than a simple complex with histamine, and quite comparable to complexes with several possible imidazole anchoring sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2016.02.030 | DOI Listing |
Mol Pharm
September 2025
Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-Ku, Kyoto 606-8501, Japan.
Fibroblast activation protein (FAP) is an attractive biomarker for tumor-targeting radioligands. While [Ga]Ga-FAPI-46 is a promising FAP-targeting radioligand for cancer diagnosis, clinical application of [Lu]Lu-FAPI-46 for targeted radionuclide therapy is limited due to its insufficient tumor retention. Albumin binder (ALB) including 4-(-iodophenyl)butyric acid is widely utilized to improve tumor accumulation of radioligands.
View Article and Find Full Text PDFJ Clin Invest
September 2025
Department of Cellular and Molecular Medicine, UCSD, La Jolla, United States of America.
3-O-sulfation of heparan sulfate (HS) is the key determinant for binding and activation of Antithrombin III (AT). This interaction is the basis of heparin treatment to prevent thrombotic events and excess coagulation. Antithrombin-binding HS (HSAT) is expressed in human tissues, but is thought to be expressed in the subendothelial space, mast cells, and follicular fluid.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106.
The β-adrenergic receptor (βAR), a prototype G protein-coupled receptor, controls cardiopulmonary function underpinning O delivery. Abundance of the βAR is canonically regulated by G protein-coupled receptor kinases and β-arrestins, but neither controls constitutive receptor levels, which are dependent on ambient O. Basal βAR expression is instead regulated by the prolyl hydroxylase/pVHL-E3 ubiquitin ligase system, explaining O responsivity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris 75005, France.
Excitatory glycine receptors (eGlyRs), composed of the glycine-binding NMDA receptor subunits GluN1 and GluN3A, have recently emerged as a novel neuronal signaling modality that challenges the traditional view of glycine as an inhibitory neurotransmitter. Unlike conventional GluN1/GluN2 NMDARs, the distribution and role of eGlyRs remain poorly understood. Here, we show that eGlyRs are highly enriched in the ventral hippocampus (VH) and confer distinct properties on this brain region.
View Article and Find Full Text PDFCell Biochem Biophys
September 2025
Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran.
In cardiovascular research, melatonin has shown promise in exhibiting antifibrotic properties and modulating endoplasmic reticulum (ER) stress. However, the exact mechanism by which it influences myocardial fibrosis has not been fully clarified. Therefore, this research aimed to investigate the inhibitory effect of melatonin on the progression of myocardial fibrosis through a mechanism involving the BIP/PERK/CHOP signaling pathway, both in silico and in vivo experimental models.
View Article and Find Full Text PDF