Bioinspired Catechol-Grafting PEDOT Cathode for an All-Polymer Aqueous Proton Battery with High Voltage and Outstanding Rate Capacity.

Adv Sci (Weinh)

ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong, NSW, 2522, Australia.

Published: February 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aqueous all-polymer proton batteries (APPBs) consisting of redox-active polymer electrodes are considered safe and clean renewable energy storage sources. However, there remain formidable challenges for APPBs to withstand a high current rate while maximizing high cell output voltage within a narrow electrochemical window of aqueous electrolytes. Here, a capacitive-type polymer cathode material is designed by grafting poly(3,4-ethylenedioxythiophene) (PEDOT) with bioinspired redox-active catechol pendants, which delivers high redox potential (0.60 V vs Ag/AgCl) and remarkable rate capability. The pseudocapacitive-dominated proton storage mechanism illustrated by the density functional theory (DFT) calculation and electrochemical kinetics analysis is favorable for delivering fast charge/discharge rates. Coupled with a diffusion-type anthraquinone-based polymer anode, the APPB offers a high cell voltage of 0.72 V, outstanding rate capability (64.8% capacity retention from 0.5 to 25 A g ), and cycling stability (80% capacity retention over 1000 cycles at 2 A g ), which is superior to the state-of-the-art all-organic proton batteries. This strategy and insight provided by DFT and ex situ characterizations offer a new perspective on the delicate design of polymer electrode patterns for high-performance APPBs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8811804PMC
http://dx.doi.org/10.1002/advs.202103896DOI Listing

Publication Analysis

Top Keywords

outstanding rate
8
proton batteries
8
high cell
8
rate capability
8
capacity retention
8
high
5
bioinspired catechol-grafting
4
catechol-grafting pedot
4
pedot cathode
4
cathode all-polymer
4

Similar Publications

The rational design of electrode materials with outstanding energy and power density for supercapacitors (SCc) and high-performance electrocatalysts in alkaline media plays an indispensable role in the application of energy storage and overall water splitting. In this paper, we prepared NiCoFe layered ternary hydroxides (LTH) using a hydrothermal synthesis method. The sample with a Ni/Co/Fe ratio of 1:2:0.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) exhibit outstanding structural tunability, clearly defined ion pathways, and remarkable thermal/chemical stabilities, rendering them highly promising candidates for applications in solid-state electrolytes. However, it remains a challenge to develop a versatile method to incorporate both ionic groups and electron-withdrawing units into a single framework for effectively improving the lithium-ion conductivity. Herein, a series of novel [3+3] defective COFs is successfully synthesized featuring active amine/aldehyde anchoring sites for subsequent post-modification, and regulates the ion conductivity through elaborately tuning the anionic/cationic groups and weak/strong electron-withdrawing units.

View Article and Find Full Text PDF

Chronic cerebral artery occlusion is an important cause of cerebral ischemic events. Endovascular recanalization is an effective treatment for this condition, but its success depends on appropriate patient selection and assessment. This is a retrospective study that collected patients with chronic cerebral artery occlusion who underwent endovascular recanalization to determine how imaging features from computed tomography angiography - including the extent of internal carotid artery occlusion, the number of calcified vessels, and the degree of calcification in the occluded vessels - affect the success rate of recanalization.

View Article and Find Full Text PDF

This study systematically investigates the role of nitrogen annealing in enhancing the structural and electrochemical properties of ZnNiO/NF composite anode materials synthesized via hydrothermal methods. By comparing air-annealed and nitrogen-annealed (400 and 600 °C) samples, it is demonstrated that nitrogen annealing at 400 °C induces the densely stacked nanosheet morphology with optimized lattice regularity, which can significantly improve the charge transport kinetics and the interfacial stability. Electrochemical evaluations reveal an outstanding initial discharge capacity of 1873.

View Article and Find Full Text PDF

Preparation of TiCTMXene-based copper/cobalt composites for electrocatalytic ammonia synthesis.

J Colloid Interface Sci

September 2025

School of Physics and Materials Science, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, Jiangxi 330031, China; College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China. Electronic address:

MXenes represent exceptionally promising electrocatalytic materials for ammonia synthesis, owing to their outstanding electrical conductivity, modifiable surface functional groups, exceptional hydrophilicity, high specific surface area, and electronegative surface characteristics. In this investigation, we systematically demonstrate that the persistent challenge of Cu and Co nanoparticle agglomeration can be effectively addressed through the in-situ growth of bimetallic CuCo nanoparticles on TiCTMXene nanosheets. This innovative approach significantly enlarges the electrochemically active surface area, maximizes the exposure of catalytically active sites, and optimizes mass transport properties, consequently leading to substantially enhanced electrocatalytic performance for ammonia synthesis.

View Article and Find Full Text PDF