A Schiff-based AIE fluorescent probe for Zn detection and its application as "fluorescence paper-based indicator".

Spectrochim Acta A Mol Biomol Spectrosc

College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China. Electronic address:

Published: March 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A Schiff-based aggregation induced emission (AIE) fluorescent probe with excited intramolecular proton transfer (ESIPT) mechanism was synthesized by grafting 2-hydrazinobenzothiazole onto 2,6-diformyl-4-methylphenol. The probe recognizes Zn selectively and sensitively, accompanied by a significant fluorescence emission increasement change from light yellow-green to strong green. Additionally, a stabilization time of at least 30 min was kept in the recognition process. Besides, a linear relationship was observed between the concentration of Zn and the fluorescence intensity at 525 nm (0.05-10 µM). And thus, the probe can detect Zn quantitatively in aqueous solution with a low detection limit of 1.9 × 10 M. Based on the AIE property and the selective recognition of Zn, SCH was strategically loaded on the filter paper to develop a novel paper-based indicator for on-site and high-efficiency detection of Zn. The results showed that the paper-based indicator could be conveniently applied to the visual inspection of Zn as expected and SCH in the paper-based indicators fortunately exhibited a better stability. Furthermore, our comprehensive application evaluations have confirmed that SCH was capable of detecting Zn in real water samples and imaging Zn in living cells roundly.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2021.120704DOI Listing

Publication Analysis

Top Keywords

aie fluorescent
8
fluorescent probe
8
paper-based indicator
8
schiff-based aie
4
probe
4
probe detection
4
detection application
4
application "fluorescence
4
paper-based
4
"fluorescence paper-based
4

Similar Publications

Synthesis of 6(7)-Arylamino-4H-chromen-4-ones With D-A Structure and Their Photophysical Properties.

Luminescence

September 2025

School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, C

A series of 2-substituted 4H-chromen-4-ones 3a-3h containing triphenylamine or N-phenylcarbazole on the benzene ring were synthesized for the first time via the Suzuki coupling reaction. The photophysical properties of the compounds and their relationship to the structure of the compounds were investigated by methods such as spectroscopic analysis, single-crystal analysis, and theoretical calculations. The systematic results indicate that compounds 3a-3h have intramolecular charge transfer (ICT), aggregation-induced emission (AIE), and dual-state emission (DSE) effects with a wide range of fluorescence emission wavelengths (421-618 nm), showing the potential to be developed into a full-color fluorophore.

View Article and Find Full Text PDF

Unveiling photophysical mechanisms of NIR-II AIE luminogens for multimodal imaging-navigated synergistic therapies.

Natl Sci Rev

August 2025

Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.

Multimodal phototheranostics has been recognized as one of the most momentous advances in cancer treatment. Of particular interest is a single molecular species simultaneously featuring in multiple imaging and synergistic phototherapies; the development of such a molecular species is nevertheless a formidably challenging task. Herein, we innovatively designed and synthesized three aggregation-induced emission (AIE)-active molecules with emission in the second near-infrared (NIR-II) window, by employing 10-indeno[1,2-][1,2,5]thiadiazolo[3,4-]quinoxalin-10-one as the electron acceptor, 4-(-butyl)--(4-(-butyl)phenyl)--phenylaniline as the electron donor, and different π-bridge moieties.

View Article and Find Full Text PDF

A novel aggregation-induced emission (AIE) system with superior performance was successfully developed through local chemical modification from thiophene to thiophene sulfone. This approach, leveraging easily accessible tetraphenylthiophene precursors, dramatically enhances the photophysical properties in a simple oxidation step. Notably, the representative 2,3,4,5-tetraphenylthiophene sulfone (3c) demonstrates remarkable solid-state emission characteristics with a fluorescence quantum yield of 72% and an AIE factor of 240, substantially outperforming its thiophene analog.

View Article and Find Full Text PDF

Microfluidic Microspheres Loaded with Aggregation-Induced Emission Nanomicelles for Theranostic Applications in Osteoarthritis.

Adv Healthc Mater

September 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.

Osteoarthritis (OA) is a common degenerative joint disease, and early diagnosis and effective treatment are essential for managing its progression. This study focuses on the development of a novel drug delivery system using aggregation-induced emission (AIE) probe for enhanced fluorescence imaging and targeted therapy in OA. TPE-S-BTD, an AIE probe, is synthesized and characterized for its photophysical properties, demonstrating significant aggregation-induced fluorescence enhancement.

View Article and Find Full Text PDF

Subcellular distribution-based reference-free cancer cell discrimination with a novel AIE cationic probe.

Anal Chim Acta

November 2025

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China. Electronic address:

Background: The development of specific fluorescent probes for cancer cell discrimination holds significant promise for advancing cancer diagnostics. Conventionally, these probes operate by translating differences in biomarkers or microenvironmental factors into variations in whole-cell fluorescence intensity. However, this dominant, intensity-based strategy is highly susceptible to extraneous fluctuations arising from probe concentration, illumination instability and complex intracellular environment.

View Article and Find Full Text PDF