Enhanced water flux and bacterial resistance in cellulose acetate membranes with quaternary ammoniumpropylated polysilsesquioxane.

Chemosphere

Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates. Electronic ad

Published: February 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An enhanced water flux and anti-fouling nanocomposite ultrafiltration membrane based on quaternary ammoniumpropylated polysilsesquioxane (QAPS)/cellulose acetate (QAPS@CA) was fabricated by in situ sol-gel processing via phase inversion followed by quaternization with methyl iodide (CHI). Membrane characterizations were performed based on the contact angle, FTIR, SEM, and TGA properties. Membrane separation performance was assessed in terms of pure water flux, rejection, and fouling resistance. The 7%QAPS@CA nanocomposite membrane showed an increased wettability (46.6° water contact angle), water uptake (113%) and a high pure water permeability of ∼370 L m h bar. Furthermore, the 7%QAPS@CA nanocomposite membrane exhibited excellent bactericidal properties (∼97.5% growth inhibition) against Escherichia coli (E. coli) compared to the bare CA membrane (0% growth inhibition). The 7%QAPS@CA nanocomposite membrane can be recommended for water treatment and biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.133144DOI Listing

Publication Analysis

Top Keywords

water flux
12
7%qaps@ca nanocomposite
12
nanocomposite membrane
12
enhanced water
8
quaternary ammoniumpropylated
8
ammoniumpropylated polysilsesquioxane
8
contact angle
8
pure water
8
growth inhibition
8
membrane
7

Similar Publications

SiO NP promotes allergic gastritis induced by degranulation of mouse MC9 cell through AQP4-mediated impairment of SIRT3-TFAM deacetylation and mitochondrial autophagy.

J Hazard Mater

September 2025

College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR C

Silicon dioxide nanoparticles (SiO NPs) are a novel material with a wide range of applications whose cumulative effects in the body pose certain health risks. The types of gastric injuries caused by different-sized SiO NPs and their mechanisms, however, remain unclear. Based on this, we established a mouse subchronic exposure model (10 mg/kg/d, 21 consecutive days of tube-feeding) with different SiO NP sizes (50, 300, and 1000 nm) in conjunction with in vitro MC9 and BMMCs models (160 μg/mL exposure for 24 h) to explore the gastric injury mechanisms.

View Article and Find Full Text PDF

Accelerating iron redox cycling via acetate modification: a ligand engineering for sustainable fenton-like oxidation.

Water Res

September 2025

State Key Laboratory of Soil Pollution Control and Safety, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Future Environment Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China. Electronic address:

Accelerating the rate-limiting surface Fe(III)/Fe(II) redox cycling is pivotal for efficient iron-mediated Fenton-like decontamination, yet conventional reductants (e.g., toxic hydroxylamine, thiosulfate) suffer from secondary toxicity, self-quenching, and heavy metal leaching.

View Article and Find Full Text PDF

Response surface optimization of anaerobic self-forming dynamic membrane (AnSFDM) formation: Dominant parameter, interaction relationship and experimental evidence.

J Environ Manage

September 2025

Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China. Electronic address:

Anaerobic self-forming dynamic membrane (AnSFDM) bioreactors have attracted increasing attention owing to their cost-effectiveness and lower carbon footprint. AnSFDM formation is the initial process of their operation and of pivotal importance for determining the basic characteristics of AnSFDMs. Nevertheless, the effect of operational parameters on the AnSFDM formation process has not been studied in a systematical and quantitative manner.

View Article and Find Full Text PDF

Sustainable Antimicrobial Silver@MXene Nanofiber Membranes for Enhanced Photothermal Membrane Distillation Performance.

ACS Appl Mater Interfaces

September 2025

Environmental Science and Engineering Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

Solar-driven desalination has emerged as a sustainable and efficient solution for addressing global water scarcity, especially beneficial in remote, off-grid, and disaster-affected regions. Among emerging technologies, photothermal membrane distillation (PMD) stands out due to its effective solar-energy conversion, scalability, and simplicity. Here, we report a hybrid PMD membrane fabricated by electrospinning MXene (TiCT) nanosheets integrated with silver nanoparticles (AgNPs) onto a poly(vinylidene fluoride--hexafluoropropylene) (PH) substrate.

View Article and Find Full Text PDF

Investigating chemical composition at the sea-air interface: A subsampling approach for marine surface microlayer analysis.

Sci Total Environ

September 2025

Faculty of Civil and Environmental Engineering, Technion, Israel. Electronic address:

The marine surface microlayer (SML) is distinct from the subsurface water by physical, chemical and biological properties. Being the interface, the SML regulates mass and energy transfer between the ocean and the overlying atmosphere. Given the wide surface area covered by oceans, even small change in flux may have a significant global impact.

View Article and Find Full Text PDF