Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ammonium (NH) is one of the most important nutrients required by plants. However, a high concentration of NH as the sole nitrogen source suppresses plant growth. Although nitrate (NO) can alleviate NH toxicity, the mechanisms underlying this ability have not been fully elucidated. In this study, wheat plants were cultivated in hydroponic solution with 7.5 mM NO (control), 7.5 mM NH (sole ammonium, SA) or 7.5 mM NH plus 1.0 mM NO (ammonium and nitrate, AN). The results showed that compared with the control, the SA treatment significantly decreased root growth, protein content and the concentrations of most intermediates and the activity of enzymes from the tricarboxylic acid (TCA) cycle. Moreover, increased the activity of plasma membrane H-ATPase and the rate of H efflux along roots, caused solution acidification, and increased the activity of mitochondrial respiratory chain complexes I-IV and the contents of protein-bound carbonyls and malondialdehyde in roots. SA treatment induced ultrastructure disruption and reduced the viability of root cells. Compared with the SA treatment, the AN treatment increased root growth, protein content, the concentrations of most intermediates and the activity of enzymes from the TCA cycle. Furthermore, AN treatment decreased the rate of H efflux, retarded medium acidification, decreased protein carbonylation and lipid peroxidation in roots and relieved ultrastructure disruption and increased the viability of root cells. Taken together, these results indicate that NO-dependent alleviation of NH toxicity in wheat seedlings is closely associated with physiological processes that mediate TCA cycle, relieve rhizospheric acidification and decrease the production of ROS and oxidative damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9208799PMC
http://dx.doi.org/10.1080/15592324.2021.1991687DOI Listing

Publication Analysis

Top Keywords

tca cycle
12
toxicity wheat
8
tricarboxylic acid
8
rhizospheric acidification
8
oxidative damage
8
treatment decreased
8
root growth
8
growth protein
8
protein content
8
content concentrations
8

Similar Publications

Rhizoctonia solani (R. solani) is a phytopathogen that extensively affects crops, leading to plant diseases and reducing crop yields, which jeopardizes food security. β-pinene is a major component of turpentine oil and serves as a lead compound for developing new fungicides.

View Article and Find Full Text PDF

The nitrogen regulator AreA modulates lipid metabolism through uga2 in Mucor circinelloides.

Fungal Biol

October 2025

Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, Shandong, China; School of Basic Medicine, Qilu Medical University, Zibo, 255300, Shandong, China. Electronic address:

Oleaginous filamentous fungus Mucor circinelloides harbors a GATA transcription activator AreA, which regulates nitrogen metabolism. In our previous study, deletion of AreA resulted in increased lipid production, while its overexpression reduced lipid synthesis. Although it is not a direct lipogenesis regulator, AreA influences metabolic flux by modulating nitrogen utilization pathways, which in turn affects carbon distribution.

View Article and Find Full Text PDF

Iron oxide-mediated enhancement of extracellular electron transfer and symbiosis in consortium of electroactive bacteria and microalgae for wastewater treatment.

Water Res

August 2025

College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China. Electronic address:

This study explores the role of α-Fe₂O₃ in improving extracellular electron transfer (EET) and symbiotic interactions between electroactive Shewanella oneidensis MR-1, its gene-deficient mutants (ΔmtrC, ΔomcA, and ΔcymA), and microalgae (Chlorella vulgaris). The iron oxide facilitates the efficient transfer of electrons generated by MR-1 to microalgal photosystem via the pathway of CymA-MtrC-OmcA to α-Fe₂O₃. This process enhances the removals of TOC, TN, and NH₄⁺-N in the MR-1 bacterial-algal consortium by 9.

View Article and Find Full Text PDF

Protective Role of Bre1 in Mitochondrial Function and Energy Metabolism in Drosophila Models of Parkinson's disease.

Free Radic Biol Med

September 2025

Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, The First Affiliated Hospital of Guangxi Medical University,Nanning, Guangxi 530021, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education,

Background: The second most common cause of autosomal recessive early-onset Parkinson's disease (PD) can be attributed to mutations in the PINK1 gene, malfunction of the mitochondria is the key pathological mechanism. Bre1 encodes an E3 ubiquitin ligase, with the discovery of Bre1's role in repairing mitochondrial damage, further investigation into its implications for PD is warranted.

Methods: We used the PINK1B9 drosophila melanogaster as the PD model.

View Article and Find Full Text PDF

Diet and obesity contribute to insulin resistance and type 2 diabetes, in part via the gut microbiome. To explore the role of gut-derived metabolites in this process, we assessed portal/peripheral blood metabolites in mice with different risks of obesity/diabetes, challenged with a high-fat diet (HFD) + antibiotics. In diabetes/obesity-prone C57BL/6J mice, 111 metabolites were portally enriched and 74 were peripherally enriched, many of which differed in metabolic-syndrome-resistant 129S1/129S6 mice.

View Article and Find Full Text PDF