98%
921
2 minutes
20
Landfill leachate is a highly polluted and complex wastewater as it contains large amounts of organic matters, ammonia‑nitrogen, heavy metals, and per-/poly-fluoroalkyl substances (PFAS), which makes its treatment very challenging. In this paper, hydrophilic/hydrophobic dual layer membranes combining advantages of pervaporation and membrane distillation was employed to treat leachate in a direct contact membrane distillation (DCMD) configuration. An aluminum fumarate (AlFu) metal organic framework (MOF) incorporated poly(vinyl alcohol) (PVA) hydrophilic layer was coated on hydrophobic PTFE membrane to overcome the low separation efficiency of PFAS and ammonia and wetting issues encountered by the conventional hydrophobic PTFE membrane used for DCMD. The rejections of dual layer membranes with different MOF loading to PFAS, ammonia, TOC and TDS were assessed based on the amount of AlFu MOF incorporated into the PVA layer. Based on the conducted adsorption tests, it was found that AlFu MOF increases the rejection of PVA layer to PFAS and ammonia. The coating of the hydrophilic layer could enhance the wetting resistance with/without MOF addition. In comparison with the pristine PTFE membrane using synthetic feed containing 3 wt% NaCl, 1 wt% addition of AlFu MOF into the PVA layer showed slightly increased flux. All the tested membranes showed more than 99% rejection to TOC. The rejection to ammonia was increased as more MOF was incorporated into the PVA layer. The maximum rejection of ammonia was 99.8% when the PVA layer containing 10% MOF. All the membranes showed more than 99% rejection to PFOS and PFHxS. However, PTFE membrane did not show any rejection to PFOA. As more MOF was added into the hydrophilic layer, the rejection to PFOA increased, but plateaued at 65.6% with 5% MOF incorporation into the hydrophilic layer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.151207 | DOI Listing |
Int J Biol Macromol
September 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, PR China. Electronic address:
Due to the poor regeneration ability of cartilage tissue, the design and fabrication of permanent hydrogel cartilage scaffolds with mechanical properties matching is still an urgent challenge. In this study, we propose an "inner swelling-outer restraint" strategy to construct Janus hydrogel for pressure-bearing cartilage replacement, which is inspired by the "Lamina-splendens" structure of cartilage. As a proof of concept, the poly(vinyl alcohol)/carboxymethyl cellulose sodium (PVA/CMCNa) layer is designed to capture more fluid by introducing negatively charged aggregates, while the macromolecular conformation of the PVA/MoS layer can be densified through wet annealing, thereby increasing the liquid permeation resistance of the PVA/CMCNa layer.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Key Lab of Guangdong Province for High Property and Functional Polymer Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:
Inspired by spider silk, polyphenolic nanodots (PTa) loaded multi-layer MXene (mMXene-PTa) through hydrogen and coordination bonds was prepared by self-polymerizing tannic acid on mMXene and used as a new crosslinker for polyvinyl alcohol (PVA). Together with starch (ST), mMXene-PTa was compounded with PVA and exfoliated to fabricate PVA/ST/mMXene-PTa nanocomposite. The phenolic hydroxyl groups in PTa formed high-density H-bonds with PVA and ST, creating an organic-inorganic dynamic crosslinking network with mMXene-PTa as nodes.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technol
Aiming at the problems such as large dust in each production process of open-pit mines, insufficient water resistance of the curing layer of dust control materials, and poor mechanical strength, this research applied the network generated by Schiff base reaction between oxidized starch (OS) and gelatin (GEL) as the basis, and combined with polyvinyl alcohol (PVA) and calcium chloride (CaCl). This material improves the problem of poor dust suppression effect caused by the environment of open-pit coal mines. It was found that the large number of amino groups contained in GEL attack the carbon atoms in the carbonyl group of OS to form carbon-nitrogen double bonds, generating Schiff bases as the crosslinking network, which enhanced the water resistance of the polymers.
View Article and Find Full Text PDFSmall
September 2025
Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta, T6G 1H9, Canada.
Rapid strides in portable electronics and telecommunication technologies have sharply escalated the demand for high-performance electromagnetic interference (EMI) shielding materials that effectively suppress secondary electromagnetic pollution while simultaneously integrating thermal management. Here an innovative, lightweight, hierarchical triple-layer aerogel structure comprising nickel (Ni) foam (NiF), titanium carbonitride (TiCNT) MXene, and poly(vinyl alcohol) (PVA), fabricated via a facile, one-step bidirectional freeze-casting process is presented. This asymmetric aerogel architecture strategically employs an impedance-matching MXene/PVA top layer for optimized microwave entry, a NiF/MXene/PVA interlayer introducing magnetic loss and enhancing heat conduction, and a reflective, thermally foamed MXene bottom layer promoting internal reflection for superior energy absorption.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Science, Technology and Engineering, University of the Sunshine Coast, Petrie, Queensland, Australia.
Drug release using polymeric microneedles (MNs) plays a significant role in medical applications and the treatment of various diseases. However, conventional MNs are often limited by complex fabrication procedures and inadequate mechanical strength. This study introduces a dual-function core/shell MN patch fabricated through a novel method that integrates 3D printing and casting techniques.
View Article and Find Full Text PDF