Insights into the correlations between the size of starch at nano- to microscale and its functional properties based on asymmetrical flow field-flow fractionation.

Int J Biol Macromol

Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; Affiliated Hospital of Hebei University, Baoding 071000, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimm

Published: December 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, the starches were isolated from three botanical sources (i.e., rice, sweet potato, and lotus seed). The size distributions of starch granules and molecules were determined by asymmetrical flow field-flow fractionation (AF4), and compared with those measured from optical microscopy (OM) and dynamic light scattering (DLS). Furthermore, the starches were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). AF4 coupled online with UV-visible, multiangle light scattering (MALS), and differential refractive index (dRI) detectors (AF4-UV-MALS-dRI) was employed for the investigation of the digestion and retrogradation properties of starches. Meanwhile, the relationships between the size of starch at nano- to microscale and its functional properties (i.e., digestibility, retrogradation, and thermal properties) were studied by Pearson correlation analysis. AF4-UV-MALS-dRI was proved to be a rapid and gentle method for the separation and size characterization of starches at both micro- and nano-molecule levels. Moreover, it was demonstrated that AF4-UV-MALS-dRI is a useful tool for the monitoring of the digestion and retrogradation properties of starches. The results suggested that the sizes of starch granules and molecules were to some extent correlated with their thermal properties and digestibility, but not with retrogradation property.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2021.10.090DOI Listing

Publication Analysis

Top Keywords

size starch
8
starch nano-
8
nano- microscale
8
microscale functional
8
functional properties
8
asymmetrical flow
8
flow field-flow
8
field-flow fractionation
8
starch granules
8
granules molecules
8

Similar Publications

Background: Understanding starch behavior under various processing conditions is important for the development of novel food products with tailored nutritional profiles. This study investigated changes to the structure and properties of native corn starch (NCS) and biomimetic starch-entrapped microspheres following thermal and enzymatic treatments.

Results: Heat-treated microspheres showed more birefringence and structural order than native starch, indicating incomplete gelatinization due to the alginate matrix.

View Article and Find Full Text PDF

A dual-cavity lasing platform is reported in which thioflavin T (ThT), a rotor-sensitive molecular probe, is employed to map molecular-crowding effects within starch granules via coupled Fabry-Perot (FP) and whispering gallery mode (WGM) resonances. In this architecture, global standing-wave feedback is furnished by a planar FP cavity, while size-tunable WGMs are supported by ThT-coated starch granules. Granules were sorted into five diameter classes (<20, 20-30, 30-40, 40-60, and >60 μm), and lasing thresholds alongside fluorescence lifetimes were determined.

View Article and Find Full Text PDF

Synergistic modification of chestnut powder via Lactobacillus plantarum and pullulanase: Promotion of resistant starch formation and structural-functional enhancement.

Carbohydr Polym

November 2025

National Key Laboratory for Development and Utilization of Forest Food Resources, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Chestnut (Castanea mollissima Blume) is a nutritionally dense food, notably rich in starch, making it an important natural source of carbohydrates and energy for human diets. However, its high content of rapidly digestible starch (RDS) limits its use in low-glycemic-index (GI) food products. This study developed a synergistic bioprocess combining Lactobacillus plantarum fermentation and pullulanase-catalyzed debranching to enhance the nutritional and structural characteristics of chestnut powder.

View Article and Find Full Text PDF

The inefficiency of traditional pesticides leads to significant resource waste, severe environmental pollution, and potential threats to human health. Pesticide microcapsules present a promising strategy for developing environmentally friendly, safe, and sustained-release formulations. In this study, we produced degradable starch nanocrystals (SNCs) via acid hydrolysis and employed octenyl succinic anhydride-modified SNCs (O-SNCs) to fabricate pesticide microcapsules.

View Article and Find Full Text PDF

Meat analogs are emerging as a sustainable alternative to meat products, and novel meat analog products could potentially offer additional health benefits. Antimicrobial resistance (AMR) poses a serious threat to global human health. Dietary choices affect the composition of bacteria in the human gut microbiome and can influence the carriage of antimicrobial resistance genes (ARGs).

View Article and Find Full Text PDF