Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aflatoxins (AFs) are secondary metabolites that represent serious threats to human and animal health. They are mainly produced by strains of the saprophytic fungus , which are abundantly distributed across agricultural commodities. AF contamination is receiving increasing attention by researchers, food producers, and policy makers in China, and several interesting review papers have been published, that mainly focused on occurrences of AFs in agricultural commodities in China. The goal of this review is to provide a wider scale and up-to-date overview of AF occurrences in different agricultural products and of the distribution of across different food and feed categories and in Chinese traditional herbal medicines in China, for the period 2000-2020. We also highlight the health impacts of chronic dietary AF exposure, the recent advances in biological AF mitigation strategies in China, and recent Chinese AF standards.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8541519PMC
http://dx.doi.org/10.3390/toxins13100678DOI Listing

Publication Analysis

Top Keywords

biological mitigation
8
mitigation strategies
8
strategies china
8
agricultural commodities
8
china
5
distribution fungi
4
fungi aflatoxin
4
aflatoxin reports
4
reports health
4
health risks
4

Similar Publications

Recent Advances in Plant-Based Vaccines: From Molecular Farming Innovations to Global Health Applications.

Biotechnol J

September 2025

Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China.

Vaccines are pivotal in mitigating infectious diseases by reducing infection rates, severity, and mortality. Plant-derived vaccines-engineered to express antigens in plants, offer distinctive advantages, including cost-efficient production, enhanced biosafety profiles, superior thermal stability, and simplified logistics. Recent advances in plant biotechnology have enabled the large-scale production of plant-based vaccines, positioning them as a viable and transformative alternative to conventional vaccine platforms.

View Article and Find Full Text PDF

Complement C4b as a Key Mediator of Synaptic Loss and Cognitive Decline in Brain Aging.

Mol Ther

September 2025

Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, China; Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu

Brain aging is a major risk factor for cognitive decline and neurodegenerative diseases, driven by synaptic loss, reduced synaptic function, and inflammation. However, the molecular mechanisms underlying these dysfunctions remain unclear. Here, we conducted comparative transcriptomic analyses of brain regions (cortex and hippocampus) and kidney tissues, a peripheral organ with documented age-related dysfunction.

View Article and Find Full Text PDF

Background: Soil salinization represents a critical global challenge to agricultural productivity, profoundly impacting crop yields and threatening food security. Plant salt-responsive is complex and dynamic, making it challenging to fully elucidate salt tolerance mechanism and leading to gaps in our understanding of how plants adapt to and mitigate salt stress.

Results: Here, we conduct high-resolution time-series transcriptomic and metabolomic profiling of the extremely salt-tolerant maize inbred line, HLZY, and the salt-sensitive elite line, JI853.

View Article and Find Full Text PDF

This study aims to investigate the predictive value of combined phenotypic age and phenotypic age acceleration (PhenoAgeAccel) for benign prostatic hyperplasia (BPH) and develop a machine learning-based risk prediction model to inform precision prevention and clinical management strategies. The study analyzed data from 784 male participants in the US National Health and Nutrition Examination Survey (NHANES, 2001-2008). Phenotypic age was derived from chronological age and nine serum biomarkers.

View Article and Find Full Text PDF

In vivo itaconate tracing reveals degradation pathway and turnover kinetics.

Nat Metab

September 2025

Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.

Itaconate is an immunomodulatory metabolite that alters mitochondrial metabolism and immune cell function. This organic acid is endogenously synthesized by tricarboxylic acid (TCA) metabolism downstream of TLR signalling. Itaconate-based treatment strategies are under investigation to mitigate numerous inflammatory conditions.

View Article and Find Full Text PDF