Transforming waste activated sludge into medium chain fatty acids in continuous two-stage anaerobic fermentation: Demonstration at different pH levels.

Chemosphere

Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia. Electronic address:

Published: February 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bioenergy recovery in the form of medium-chain fatty acids (MCFAs) from waste activated sludge (WAS) is increasingly attractive, which are valuable building blocks for fuel production. This study experimentally demonstrated the long-term MCFAs (C6-C8) production from WAS in two-stage anaerobic sludge fermentation at different pH conditions, using continuously operated bench-scale anaerobic reactors. The WAS was continuously converted to short chain fatty acids (SCFAs, 3500-3800 mg chemical oxygen demand (COD)/L) at the first stage via alkaline anaerobic fermentation, which was directly fed into the second stage as both substrates and inoculum for MCFAs production through chain elongation (CE). The productions of MCFAs at the second stage were continuously studied under three different pH conditions (i.e., 10, 7 and 5.5). The results demonstrated that there was no significant MCFAs production at pH 10 during the steady state, whereas the MCFAs productions were clearly observed at both pH 7 and pH 5.5, with much higher MCFAs production from WAS at pH 7 (i.e., 10.32 g COD/L MCFAs) than that at pH 5.5 (i.e., 8.73 g COD/L MCFAs) during the steady state. A higher MCFAs selectivity of 62.3% was also achieved at pH 7. The relatively lower MCFAs production and selectivity at pH 5.5 was likely due to the higher undissociated MCFAs generated at pH 5.5, which would pose toxicity impact on CE microbes and thus inhibit the CE process. Microbial community analysis confirmed that the relative abundances of CE related microbes (e.g., Clostridium sensu stricto 12 sp. and Clostridium sensu stricto 1) increased at pH 7 compared to those at pH 5.5, which enabled more efficient MCFAs production from WAS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.132474DOI Listing

Publication Analysis

Top Keywords

mcfas production
20
mcfas
13
fatty acids
12
waste activated
8
activated sludge
8
chain fatty
8
two-stage anaerobic
8
anaerobic fermentation
8
second stage
8
steady state
8

Similar Publications

Biocarrier-driven enhancement of caproate production via microbial chain elongation: Linking metabolic redirection and microbiome assembly.

Bioresour Technol

September 2025

Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China. Electronic address:

This study investigated the effects of five representative biocarriers-biochar (BC), activated carbon (AC), nano-magnetite (NM), zero-valent iron (ZVI), and polyurethane sponge (PUS)-on chain elongation (CE) from ethanol/acetate in anaerobic systems. All carriers enhanced CE to varying extents. BC and NM significantly increased caproate yields (6032.

View Article and Find Full Text PDF

Purpose: Consumption of chili with capsaicinoids, such as dihydrocapsaicin (DHC), offers metabolic benefits to humans. However, their spiciness and rapid degradation prevent it from being used as a treatment for metabolic syndrome (MetS), including obesity, insulin resistance (IR), and hyperglycemia. During the degradation process of capsaicinoids, DHC is metabolized to non-pungent 8-methyl nonanoic acid (8-MNA), a methylated medium-chain fatty acid (MCFA).

View Article and Find Full Text PDF

Background And Aims: Liver fibrosis is a common adverse prognostic factor in various liver conditions. Medium-chain fatty acids (MCFAs), unique fatty acids transported directly to the liver, undergo rapid metabolism, providing energy to hepatocytes and acting as signalling molecules that mediate diverse cellular functions. Nonetheless, the precise impact of MCFAs on the pathogenesis of liver fibrosis remains incompletely understood.

View Article and Find Full Text PDF

Upcycling biowaste into useful biochemicals, including medium-chain fatty acids (MCFAs) represents a crucial node in the transition toward a circular economy. However, the output and stability of anaerobic microbiomes for MCFAs production are strongly anchored on the effective inhibition of competing pathways, including methanogenesis, while stimulating the growth of bacteria producing MCFAs. Here, we proposed a mixotrophic chain elongation (CE) concept for producing MCFAs from food waste by exploring carbon monoxide (CO) as a methanogenic inhibitor.

View Article and Find Full Text PDF

Carbon chain elongation has been an innovative process for the synthesis of medium-chain fatty acids (MCFAs). Among them, caproate is a vital multi-functional one. To enhance the synthesis efficiency of caproate, the growth conditions of carbon chain elongation microorganisms need to optimize to develop an ideal niche, ultimately enhancing the production of caproate.

View Article and Find Full Text PDF