98%
921
2 minutes
20
There are still huge challenges from clinical real-world data to accurate targets and critical quality attributes (CQAs) for effective treatment of allergic rhinitis (AR). Here, we present a novel integrated strategy that biosensors and intelligent algorithms were used to angle AR targets and CQAs from clinical real world. Firstly, bagging and boosting partial least squares discrimination analysis (PLS-DA) and Monte-Carlo sampling were proposed to screen accurate AR targets. Macrophage migration inhibitory factor (MIF) and Interleukin-1beta (IL-1β) potential targets were obtained based on large-scale analysis of one thousand proteins and in-depth precise screening of seventy proteins. Furthermore, high electron mobility transistor (HEMT) biosensors were fabricated and successfully modified by MIF and IL-1β potential targets with a low detection concentration as 1 pM and quantitative range from 1 pM to 10 nM. Surprisingly, through MIF/IL-1β biosensors, we angled 5-O-methylvisammioside, amygdalin, and cimicifugoside three CQAs. The strong interaction was discovered among three CQAs and MIF/IL-1β biosensors with almost all K up to 10 M. Finally, interaction among three CQAs and MIF/IL-1β biosensors were evaluated by in vitro and vivo experiments. In this paper, two critical potential targets and three effective CQAs for AR treatment were discovered and validated by biosensor and advanced algorithms. It provides a superior integrated idea for angling critical targets and CQAs from clinical real-world data by biosensors and informatics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2021.113608 | DOI Listing |
Clin Infect Dis
October 2023
Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA.
The advancement of infectious disease diagnostics, along with studies devoted to infections caused by gram-negative and gram-positive bacteria, is a top scientific priority of the Antibacterial Resistance Leadership Group (ARLG). Diagnostic tests for infectious diseases are rapidly evolving and improving. However, the availability of rapid tests designed to determine antibacterial resistance or susceptibility directly in clinical specimens remains limited, especially for gram-negative organisms.
View Article and Find Full Text PDFBiosens Bioelectron
December 2023
Department of Orthopedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, PR China. Electronic address:
Macrophage migration inhibitory factor (MIF) is a pro-inflammatory factor produced by residual red blood cell lysis, which can significantly influence the curative effect of Platelet-rich plasma (PRP) therapy used for osteoarthritis (OA) treatment. In this study, we proposed a novel approach for detecting the concentration of MIF in PRP using a dopamine-coated antibody-Au (core)-Ag (shell)-SERS sensor, which enables ultrasensitive and rapid detection of MIF. The best experimental conditions have a detection limit of only 90.
View Article and Find Full Text PDFBiotechnol Adv
November 2023
SDU Biotechnology, Faculty of Engineering, University of Southern Denmark, Odense M DK-5230, Denmark. Electronic address:
Biosensors are powerful tools to investigate, phenotype, improve and prototype microbial strains, both in fundamental research and in industrial contexts. Genetic and biotechnological developments now allow the implementation of synthetic biology approaches to novel different classes of microbial hosts, for example photosynthetic microalgae, which offer unique opportunities. To date, biosensors have not yet been implemented in phototrophic eukaryotic microorganisms, leaving great potential for novel biological and technological advancements untapped.
View Article and Find Full Text PDFBMC Neurol
June 2022
Department of Pharmacology and Clinical Pharmacology, University of Auckland, 85 Park Road, Auckland, 1023, New Zealand.
Amyotrophic lateral sclerosis (ALS) is an incurable and rapidly progressive neurological disorder. Biomarkers are critical to understanding disease causation, monitoring disease progression and assessing the efficacy of treatments. However, robust peripheral biomarkers are yet to be identified.
View Article and Find Full Text PDFBiosens Bioelectron
December 2021
Beijing University of Chinese Medicine, School of Chinese Materia Medica, Beijing, 102488, China; Pharmaceutical Engineering and New Drug Development of TCM of Ministry of Education, Beijing, 102488, China. Electronic address:
There are still huge challenges from clinical real-world data to accurate targets and critical quality attributes (CQAs) for effective treatment of allergic rhinitis (AR). Here, we present a novel integrated strategy that biosensors and intelligent algorithms were used to angle AR targets and CQAs from clinical real world. Firstly, bagging and boosting partial least squares discrimination analysis (PLS-DA) and Monte-Carlo sampling were proposed to screen accurate AR targets.
View Article and Find Full Text PDF