Electrochemically Promoted Asymmetric Transfer Hydrogenation of 2,2,2-Trifluoroacetophenone.

J Org Chem

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

Published: November 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The study reported an electrochemically promoted asymmetric hydrogen transfer reaction of 2,2,2-trifluoroacetophenone with a chiral Ru complex. ()-α-(Trifluoromethyl) benzyl alcohol with a 96% yield and 94% ee could be obtained with only a 0.5 F mol charge amount at room temperature and normal pressure.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.1c01030DOI Listing

Publication Analysis

Top Keywords

electrochemically promoted
8
promoted asymmetric
8
asymmetric transfer
4
transfer hydrogenation
4
hydrogenation 222-trifluoroacetophenone
4
222-trifluoroacetophenone study
4
study reported
4
reported electrochemically
4
asymmetric hydrogen
4
hydrogen transfer
4

Similar Publications

Neural activity is increasingly recognized as a crucial regulator of cancer growth. In the brain, neuronal activity robustly influences glioma growth through paracrine mechanisms and by electrochemical integration of malignant cells into neural circuitry via neuron-to-glioma synapses. Outside of the central nervous system, innervation of tumours such as prostate, head and neck, breast, pancreatic, and gastrointestinal cancers by peripheral nerves similarly regulates cancer progression.

View Article and Find Full Text PDF

Alternating current (AC) electrolysis offers a promising strategy for modulating redox states in metal-catalyzed reactions, yet its mechanistic basis remains poorly understood. Here, we uncover how AC frequency synchronizes with key steps in a Ni-catalyzed cross-coupling cycle to control product selectivity between C-N and C-C coupling. We show that optimal C-N selectivity arises from minimizing the exposure of a key intermediate, Ni(Ar)Br, to reducing conditions that otherwise promote off-cycle Ni species and undesired C-C homocoupling.

View Article and Find Full Text PDF

Simultaneous removal of NO and propane by solid electrolyte cells with LaPrBaNiO bifunctional electrodes.

J Hazard Mater

September 2025

School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Environmental Chemistry and Low Carbon Technology, Zhengzhou 450001, China. Electronic address:

Solid electrolyte cell is a novel gas purification approach, which has unique superiority in simultaneous nitrogen oxides (NO) and volatile organic compounds (VOCs) removal. The development of effective electrode materials and the comprehensive understanding of reaction mechanisms are essential to advancing this technology. In this study, LaPrBaNiO (x = 0, 0.

View Article and Find Full Text PDF

Interface-engineered CoN-WN heterostructure catalyst with synergistic dual-site hydrogen bonding and electronic modulation for efficient 5-hydroxymethylfurfural electrooxidation.

J Colloid Interface Sci

September 2025

Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China. Electronic address:

The 5-hydroxymethylfurfural electrooxidation reaction (HMFOR) stands out due to the value-added production and mild conditions. However, its catalytic efficiency is hampered by sluggish kinetics. Herein, with a focus on optimizing the adsorption and activation of reaction molecules, a CoN-WN heterostructure catalyst is constructed for efficient HMFOR.

View Article and Find Full Text PDF

Unlocking High-Performance Electrochemiluminescence in Supramolecular Coordination Frameworks via π-Bridge Engineering and Aggregation.

Small

September 2025

School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510641, China.

Aggregation-induced electrochemiluminescence (AIECL) is a promising strategy for enhancing electrochemiluminescence (ECL) efficiency by minimizing energy loss of excited-state ECL emitters. However, rational design of high-efficiency AIECL emitters is hindered by limited mechanistic understanding and an unclear structure-performance relationship. To address this, four supramolecular coordination frameworks (SCFs) with varying π-bridge structures are synthesized using pyridine-functionalized tetraphenylethene (TPE) as the ligand and Pt(II) as the coordination center.

View Article and Find Full Text PDF