Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many cellular processes, including cell division, development, and cell migration require spatially and temporally coordinated forces transduced by cell-surface receptors. Nucleic acid-based molecular tension probes allow one to visualize the piconewton (pN) forces applied by these receptors. Building on this technology, we recently developed molecular force microscopy (MFM) which uses fluorescence polarization to map receptor force orientation with diffraction-limited resolution (~250 nm). Here, we show that structured illumination microscopy (SIM), a super-resolution technique, can be used to perform super-resolution MFM. Using SIM-MFM, we generate the highest resolution maps of both the magnitude and orientation of the pN traction forces applied by cells. We apply SIM-MFM to map platelet and fibroblast integrin forces, as well as T cell receptor forces. Using SIM-MFM, we show that platelet traction force alignment occurs on a longer timescale than adhesion. Importantly, SIM-MFM can be implemented on any standard SIM microscope without hardware modifications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8333341PMC
http://dx.doi.org/10.1038/s41467-021-24602-xDOI Listing

Publication Analysis

Top Keywords

cell receptor
8
receptor force
8
force orientation
8
structured illumination
8
forces applied
8
forces
5
turn-key mapping
4
cell
4
mapping cell
4
force
4

Similar Publications

Systemic Delivery of an mRNA-Encoding, Tumor-Activated Interleukin-12 Lock to Eliminate Tumors and Avoid Immune-Related Adverse Events.

Nano Lett

September 2025

Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.

Interleukin-12 (IL-12) is a robust proinflammatory cytokine that activates immune cells, such as T cells and natural killer cells, to induce antitumor immunity. However, the clinical application of recombinant IL-12 has been limited by systemic immune-related adverse events (irAEs) and rapid degradation. To address these challenges, we employed mRNA technology to encode a tumor-activated IL-12 "lock" fusion protein that offers both therapeutic efficacy and systemic safety.

View Article and Find Full Text PDF

Background: A secondary Pasteurella multocida (Pm) infection following Mycoplasma ovipneumoniae (Mo) challenge in sheep results in severe respiratory disease. Scavenger receptor A (SRA) is a key phagocytic receptor on macrophages, which facilitates microbial clearance. However, the role of sheep SRA in Mo-associated secondary Pm infection is less understood.

View Article and Find Full Text PDF

Objective: To develop a novel prognostic scoring system for severe cytokine release syndrome (CRS) in patients with B-cell acute lymphoblastic leukemia (B-ALL) treated with anti-CD19 chimeric antigen receptor (CAR)-T-cell therapy, aiming to optimize risk mitigation strategies and improve clinical management.

Methods: This single-center retrospective cohort study included 125 B-ALL patients who received anti-CD19 CAR-T-cell therapy from January 2017 to October 2023. These cases were selected from a cohort of over 500 treated patients on the basis of the availability of comprehensive baseline data, documented CRS grading, and at least 3 months of follow-up.

View Article and Find Full Text PDF

An international prognostic index to predict the early chemoimmunotherapy failure of diffuse large B-cell lymphoma.

Ann Hematol

September 2025

Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

 Approximately 30-40% of diffuse large B-cell lymphoma (DLBCL) patients will develop relapse/refractory disease, who may benefit from novel therapies, such as CAR-T cell therapy. Thus, accurate identification of individuals at high risk of early chemoimmunotherapy failure (ECF) is crucial. Methods.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) therapies have demonstrated remarkable clinical efficacy in hematological malignancies, validating their therapeutic potential. However, challenges such as therapeutic resistance and limited accessibility hinder their broader application. To overcome these limitations, alternative CAR-based cell therapies, including CAR-Natural Killer (CAR-NK), CAR-macrophage (CAR-M), and CAR-dendritic cell (CAR-DC) therapies, have been proposed.

View Article and Find Full Text PDF