98%
921
2 minutes
20
When dielectric elastomer materials are used for power generation, bias voltage is applied at both ends of dielectric elastomer film, and there are equal amounts of heterogeneous charges on both sides of the film, so Maxwell electrostatic force is always coupled in the process of power generation. In order to investigate the distribution of Maxwell stress in dielectric elastomer material under electric field, the electrostatic model of dielectric elastomer generator is established in COMSOL finite element simulation software environment in this paper. The distribution of electrostatic force is studied from two aspects of theoretical derivation and simulation, and the magnitude and direction of electrostatic force are determined. The simulation results show that the Maxwell electrostatic force can be equivalent to the tensile force along the film plane and the extrusion force perpendicular to the plane, and they are the same.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8292332 | PMC |
http://dx.doi.org/10.1038/s41598-021-93486-0 | DOI Listing |
Adv Mater
September 2025
Departmant of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
Microrobots are expected to push the boundaries of robotics by enabling navigation in confined and cluttered environments due to their sub-centimeter scale. However, most microrobots perform best only in the specific conditions for which they are designed and require complete redesign and fabrication to adapt to new tasks and environments. Here, fully 3D-printed modular microrobots capable of performing a broad range of tasks across diverse environments are introduced.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
Graduate School of Medicine, Nagoya University, Nagoya, Japan.
Electroactive polymer (EAP) artificial muscles are gaining attention in robotic control technologies. Among them, the development of self-sensing actuators that integrate sensing mechanisms within artificial muscles is highly anticipated. This study aimed to evaluate the accuracy and precision of the sensing capabilities of the e-Rubber (eR), an artificial muscle developed by Toyoda Gosei Co.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
The development of high-performance wearable haptic actuators remains challenging for immersive virtual reality (VR) applications due to limitations in voltage efficiency, low-voltage operation, and tactile fidelity. This work presents conformal elastic electret actuators composed of silica and poly(dimethylsiloxane) (PDMS) nanocomposites and liquid-metal (LM) electrodes, which overcome limitations in skin-device mechanical mismatch and energy efficiency. Through parametric polarization optimization under coupled thermal-electric fields (4 MV/m, 180 °C), the actuators demonstrate low threshold voltage (38.
View Article and Find Full Text PDFSmall
August 2025
State Key Laboratory for Reliability and Intelligence of Electrical Equipment, Engineering Research Center of Ministry of Education for Intelligent Rehabilitation Device and Detection Technology, Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Heb
Dielectric elastomer actuators (DEAs) have emerged as leading candidates for artificial muscles in high-performance soft robotics, simultaneously offering large reversible deformations, excellent mechanical compliance, a fast response, and a high energy density. These features make them ideal for broad applications that require versatile adaptability, lightweight construction, and safe human-machine interactions. Despite their potential, their practical implementation remains hindered by several interrelated challenges, including high driving voltages, poor electromechanical stability, limited power density, and inadequate cycling durability.
View Article and Find Full Text PDFNat Commun
August 2025
School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
Dielectric elastomer actuators (DEAs) exhibit large actuation strains, lightweight, and fast response, making them a promising candidate for soft robotics and soft grippers. Ionogels have been used as the electrodes in DEAs to offer thermostability and self-healability, however, typically the elastic modulus of the self-healing ionogel electrodes is of several tens of kPa (or higher), limiting the actuation strain performance and self-healing speed of the DEA. In this work, a poly(ionic liquid) (PIL) electrode with an ultralow elastic modulus of 3.
View Article and Find Full Text PDF