98%
921
2 minutes
20
Electroactive polymer (EAP) artificial muscles are gaining attention in robotic control technologies. Among them, the development of self-sensing actuators that integrate sensing mechanisms within artificial muscles is highly anticipated. This study aimed to evaluate the accuracy and precision of the sensing capabilities of the e-Rubber (eR), an artificial muscle developed by Toyoda Gosei Co., Ltd., and to investigate its potential for healthcare sensing applications such as smart insoles. The objective was to transform the eR into a thin capacitor and estimate the applied load by sensing minute changes in the capacitance. The changes in the EAP dielectric constant, electrode area, and inter-electrode distance, all of which define the capacitance, are non-linear functions. The relationship with the external force also exhibits nonlinearity. To address this issue, we experimentally plotted the load and capacitance changes and derived a regression equation. We evaluated the sensing characteristics of both a stand-alone sensor and a sensor embedded in a smart insole, followed by a precision verification of the load estimation using the derived regression equation. Load-capacitance changes were measured up to 400 N at three conditions: 23 °C and 50% humidity, 40 °C and 50% humidity, and 40 °C and 80% humidity. For the standalone sensor, the coefficient of variation was less than 1.25% and the confidence interval was 0.25%, indicating high precision. However, for the sensor embedded within the insole housing, the coefficient of variation increased to less than 8%, and the confidence interval was 1.5%, likely owing to the influence of gaps within the insole structure. Regarding the load estimation equation, a 5th-order polynomial approximation (R >0.999) demonstrated the best fit, indicating that it is sufficiently accurate for healthcare sensing applications. Although capacitance-based sensors are increasingly being used in biomedical monitoring for pressure and load measurements owing to their durability and high sensitivity, their primary challenge lies in the nonlinearity of the sensing results. Although this challenge also exists for capacitance sensors utilizing artificial muscles, our study shows that developing a regression equation based on the experimental relationship between the load and capacitance changes can yield sufficient precision for practical healthcare applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12408638 | PMC |
http://dx.doi.org/10.3389/fbioe.2025.1639630 | DOI Listing |
J Orthop Res
September 2025
Department of Kinesiology, College of Health Sciences, University of Rhode Island, Kingston, Rhode Island, USA.
Arthroplasty surgery is a common and successful end-stage intervention for advanced osteoarthritis. Yet, postoperative outcomes vary significantly among patients, leading to a plethora of measures and associated measurement approaches to monitor patient outcomes. Traditional approaches rely heavily on patient-reported outcome measures (PROMs), which are widely used, but often lack sensitivity to detect function changes (e.
View Article and Find Full Text PDFBMJ Lead
September 2025
Green Templeton College, University of Oxford, Oxford, UK.
Background: In 2021, Dr Kalra embraced an opportunity for a leadership role at a start-up healthcare organisation in India. This gave him an opportunity to adapt his National Health Service (NHS) leadership experience to the evolving Indian private healthcare landscape. This paper shares his lived experience as a National Medical Director and delves into the experiences and leadership insights he acquired during this.
View Article and Find Full Text PDFHealth Expect
October 2025
Department of Social Work and Social Administration, The University of Hong Kong, Hong Kong, China.
Background: Serving as peer supporters in later life has been linked to a greater sense of purpose and meaning in life. How the wisdom of older adults could be leveraged to improve the implementation of peer support work, however, has rarely been considered. We aimed to examine the perspectives of peer supporters in this study, including the challenges they encountered in practice and the strategies they developed to navigate their roles.
View Article and Find Full Text PDFJMIR Hum Factors
September 2025
KK Women's and Children's Hospital, Singapore, Singapore.
Background: Breast cancer treatment, particularly during the perioperative period, is often accompanied by significant psychological distress, including anxiety and uncertainty. Mobile health (mHealth) interventions have emerged as promising tools to provide timely psychosocial support through convenient, flexible, and personalized platforms. While research has explored the use of mHealth in breast cancer prevention, care management, and survivorship, few studies have examined patients' experiences with mobile interventions during the perioperative phase of breast cancer treatment.
View Article and Find Full Text PDFACS Sens
September 2025
METU MEMS Center, Ankara 06530, Türkiye.
Cardiovascular diseases (CVDs) remain a leading cause of death, particularly in developing countries, where their incidence continues to rise. Traditional CVD diagnostic methods are often time-consuming and inconvenient, necessitating more efficient alternatives. Rapid and accurate measurement of cardiac biomarkers released into body fluids is critical for early detection, timely intervention, and improved patient outcomes.
View Article and Find Full Text PDF